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Abstract

This papekestimates the effectof environmental regulatioon firm productivity
using a regressiondiscontinuity designi mp | i ci t water qu@lityy na 6 s
monitoring systemBecausewater quality readings are importaior political
evaluatiors, and the monitoring stationenly capture emissions frortheir
upstream regions local governments aréncentvized to enforce tighter
environmentalregulations onfirms immediatéy upstream of a monitoring
station, rather than those immedigtédownstreamExploiting this discontinuity

in regulation stringencwyith novel firmlevel geocodeemission and production
datasetswe find that uptream polluting firms face a 27% reduction in Total
Factor Productivity (TFP), aha 48% reduction in emissionas compared to
their downstream counterpari&/e find that the discontinyitin TFP does not
exist in nonpolluting industriespnly emerged after the government explicitly
linked political promotion tavater qualityreadings and was entirely driven by
prefecture citiesvith incentivized mayorsA back of the envelope calculation
indicatesthat Chinads waterpollution abatementarget(20162020 would lead

to roughlyonetrillion ChineseY uanlossin industrialoutputvalue
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|. Introduction

The question of whether environmental regulation hinders econefficeency has long
beenimportant and controversialoday,especiallyin manyrapidly-growing economieghis
debateattractsmuch attention and entails significant policy ramificatienOn the one hand,
neoclassicanodelssuggest thatnvironmental regulationsill increase production castead
to a reallocation of labor and capjtahdperhapseducethe competitivenessf an econom.
On the other hand, environmentaliatedother proponents of environmental protectzmgue
that stringentregulationsprovide incentives forpolluters to develop cleanand less costly
technologes to reduce pollution, whicltanin turn be beneficialto productivity. Notably,
Porter (1991) argues that, if one country adopts more stringent environmental standards than a
competitor, firms in this country will invest more in clean innovations, which in turn will
enhance the ¢dountryds growt h.

In thisstudy, we estimate the causal effamftenvironmental regulatioon firm productivity
usinga novel spatial regression discontinudgsignWee x p | o i tsurf@khwater aalgy
monitoring system anghvestigatehow tighter water emission contra$fectthe total factor
productivity (TFP)of Chinese manufacturing firm§Ve arguethat becausevater quality
monitors can only pick up pollution information frompstreamregions and becausehe
reading from the monitorsare important for political evaluatisnlocal governmerg have
strong incentives toequireupstream firmsto abateemissionsAs a result, whin a small
neighborhoodaround awater quality monitoring station,upstream firmsface tighter
environmental regulations than downstream firBys focusingon anarrowgeographidand
that only stretchesdrom a few townships upstream and downstreasineachsurface water
monitoring statio, we are abl¢o isolate the impacts of water qualigntrols onindustrial
f 1 r proguttivityfrom potentialconfounding factorsOur analysis showthatupstream firms
in polluting industriedave significantly lower TFP as compared to downstream firms.

Theidentificationrelies on the assumption thatstream and downstreafinms should be
ex anteidentical in theabsence of any pollution controflBhis assumptioris likely to hold
becausehe locatioms of surface water qualitynonitoringstatiors weremainly determined by
hydrologicalfactas (such as wateftow andriver width) rather tharsocioceconomicfactors
Notably, the Chinese government requikeater quality monitoring statiorte beestablished

close toexisting hydrological stationso thatthey canshare certain facilitieand combine

lEvidence in favor of Porterodos hypothesis is summar.i
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water quality and hydrological datBecausethe hydrological statioe wereestablished to
monitor hydrological conditions rather than industrial conditions, and most of them were
established between the 1950s and 19@AsnChinahadrelativelylittle industrial pollution
the location choices of klyological monitoring stations should beorthogonalto firmso
economicandenvironmentaperformanceoday

In additionto the qualitative argumentse documenthreeempiricalpatternsn the datdo
supportthe validity ofour research desigRirst, we find thatonly firms in polluting indistries
are affectd by water quality monitoringvhile firms innon-pollutingindustriesareunaffected.
Secongdwe analyze the dathy year andshow that thespatialdiscontinuityi n f i rims 6 TFF
the polluting indgtriesonly became evight after 2003whenthe new political regimeof
President Hu Jintastarted to emphasizchieving abalance between economic growth and
sustainability Relatedly, ve also show thdirm characteristics and township se&oconomic
conditionswerewell balanced between the upstream and the downstream before regulations
became tightThird, exploitingthe fact that many monitoring staticaeintentionallylocated
adjacento hydrological stations, wesewhethera firm is upstream of a hydrolagil station
as an instrumental variabter whether a firm isupstream of a monitoring statioand find
guantitativelysimilar results

Our findings contributdo the ongoing debate on the economic costs of environmental
regulationsin several importantwvays First, althoughthe topic is of tremendous policy
relevance in developing countriespst studieso date havdocusedon developed countries
(e.g, Jaffe et al.1995;Henderson 1996; Becker and Hender2990; Bermarand Bui, 2001;
Greenstong2002;Walker, 211; Greenstonéjst, and Syversar2012;Ryan, 2012Kahn and
Mansur, 20B; Walker, 2013). In this study, we investigat€hina, the largest developing
country manufacturerand emitter in the worldand highlight the potentialy significant
economic cost of environmental regulation in the context of a rapgtlywingmanufacturing
economyMoreover, most of the existing literature on environmental regulation focuses on air
pollutions, and the few exceptions tllatlook at water regulation mainly onlyvastigate the
environmental consequences of water regulation (Greenstone and Hanna, 2014; Keiser and
Shapiro, 2018)leaving a gap in knowledge regarding the economic costs of water regulation,
which our paper intends to fill in.

Secondour analyses on épolitical economy of water quality monitoring shed light on how
environmentateguations are implementad reality, whichin the Chinese contekiaslargely
beenablack box toacademiaand the publicWe find thatupstream firmgay more emission
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feesand taxes thado downstreanfirms, even though thegctuallyproduce lower levelsfo
outpus and emissions This implies that local governmentsuse a double standardn
environmental regulation€onsistentvith our explanatiosto the discontinuityyve also find
that political promotionincentivesdrive thebaselineeffect whena city leader has higher
probability of promotionandthus strongr political incentives, the impact of water quality
monitoring on TFRan bewice aslarge Additionally, araundmonitoring stationsvhose data
are lessusceptibleéo localpolitical influence, i.e., stationsthat automatically send data to the
central governmemather than relying on technicigtscal politicians have tonplement more
stringent regulationso improve the water quality reading®sulting largeFP difference
between upstreamnd downstream firm§ hese findings add tihe growing literature on the
political economy of pollution (List and Sturm, 2006; Burgess et al., Kd@n et al., 2015;
Lipscomb and Mobarak, 2017; Jia 20l&)nd suggests potenti al
environmental data (Ghanem and Zhang, 2014).

Finallyy nder st anding firmsé abat ementriticaldost s

mal

an

optimal policy designUsing anothefirm-levelgeocodedl at aset t hat records

environmental performance, werther estimate the impacts of water quality monitoring on

water pollutionemissionsWe find thatboth chemicaloxygendemand COD) emissios and

COD emission intesity (emissions per unit of output) are higher in downstream regions,

suggesting that the total reductioreimissions comes not only from thpstreanreductionin
output but also from thepstreamadoption of cleaner technologieSombining the TFP
estimates with the CODestimateswe calculatethe economic costs ofightening water
pollution regulationsWe estimatethat a 10% reduction in COBmissiondeads to a 2.4%
decrease in TERand thatC h i ntaag&tsofreducingtotal COD emission$y 10% betwen
2016and2020 wouldcause a total &s in industrial output value 800billion Chineseyuan
(159billion US dollarg under current policy design and enforcement practloesddition to
thelargeoverall economic costs associated with emission remyetsingdetailedfirm-level
dataalso allows us to explore the channels through which firms are affecaad helps us
understand how different types of firms respond to regulatibos instancewe show that
upstream firmgrave to make substantiallyame investments in machineries (capitalctpe

with tighte regulation Heterogeneouanalysesevealthatthe TFP loss is almost exclusively

experienced by private Chinese firms, so tightening environmental regulations in the future is

likely to damagethe competitiveness of private Chinese firms rather than-ctated or

foreign firms. Tests onsorting suggest that to avoid the large impact of regulation on
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productivity, upstream firms tend to relocate, but ttés only happen in the long run.
Combinal together, theseesultsimply a redistribution of production, income, environmental
guality and social welfare between upstream and downstream regiosstudytherefore also
speals to several lines of literature on the impacts of environmental régulan production
(Becker and Henderson, 2Q0@mployment (Greenstone, 2002; Walker, 2011), plant location
choice (List et a).2003), income and total welfarByan, 2012)andforeign direct investment
(FDI) (FredrikssonList and Millimet, 2003; Hanna2010; Cai et al2016)

The rest of this paper is structured as follow&ection |l describesthe institutional
backgroundresearch design amanpiricalstrategy Sectionlll descibes the data and presents
descriptivestatistics. SectionV presentsthe estimation resultand discusss the findings
Section Vexamineghe channels, explores the political economy of environmental regulation,
and tess whether emission measures also differ across the monitoring stédectson VI
interpretsthe resuk andbenchmark their economic significanceSectionVIl concludes the

paper.

Il. Research Desigrand Empirical Setup
A. Water Quality Monitoringand Water Pollution Controls China

As the world krgest developing country, China faces a variety of prgsenvironmental
challenges, including prevalent water and air pollutAccording to the World Bank (2007),
roughly 70percent ofC h i nrigeés svere polluted and containediater deemed unsafe for
human consumptiorfat the time of that repgrt Poor suface waterquality has driven
policymakers toproposeregulations to protectvater bodies and reerse the process of
degradation A national water quality monitoring systewas establishedn the 1990sto
monitor surface water quality majorriver segmets, lakes and reservoirs.

Initially known as the Bureau of Environmental Protecttbe Ministry of Environmental
Protection (MEP)establishedd he @A Nati onal Envi riaghnNesvork a | Qu
Surface WaterMonitoring Systend (NEQMN-SWMS) in 1993 At the beginning the
monitoring systemvasintendedmainlyfor scientificrather thamegulatorypurposs, and most
of the stationlevel monitoring data were kept confidential by the governmentNo strict
emission abatement targeteresetby theChinesegovernmenbetween 1990s to early 2000s

becauseeconomic growth was considered theo u n tpniogtyd As a result, lbng with
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Chinads rapi d, tecamry wiinessesgwere degradation @k ecological
systens.

In 2002, Hu Jintabecame thaewpolitical leader ofChing takingpowerfrom Jiang Zemin,
andheld officeuntil 2012.Gi ven t he c o wenvironnerias chatlengeghe new g
presidentstarted to emphasize the importance of seeking a balance between economic growth
and environmntal sustainabilityNotably, in 2003, PresidentHu pr oposed t he ASc
Outlook of De v e | o {9@8&)5F which soughtintegrated sets of solutions to economic,
environmental and social problepepeningan era oenvironmental regulation

Respondingo the SOD sloganthe MEPincreasedts effortsto resolvetheissue ofwater
pollution. In 2003,the MEPissuedan updatedversion of NEQMN-SWMS andspreadthe
ATechni cal Specification Requiremewattseorfoor Mc
localgovernmentsThenewpolicy documentsed toan expansionf thenationalsurfacewater
guality monitoring systemwith the total number of stateontrolledstations increasg from
419to 574between 20Band2010.3 The water quality data also becameilade for the public
andwerepublished in various environmental yearbosetesting from2003.

During PresidentHu®s political regime,the importance of clean surface water was
emphasized ande¢ centralgovernmentadopteda targetbased abatement systémcontrol
environmental pollutantsin particular during the 11th Fiverear Plan 2006i 2010) the
emission abatemetdrgetsincluded (butarenot limited to): (1)reducingCOD emissionsy
10% (from 1414 million tons in 2005 to 123 million tons in 210), (2) reducingthe
percentageof monitoredwater sections failing to meet Grade V National Surface Water
Quality Standarsl from 26.1% in 2005 to 22%y 2010,and (3)increasingthe ratio of
monitoredwater sections (of the sevemain bodies ofwater n China) meeting Grade llI
National Surface Water Quality Standsfcom under41% in 2005 to 43%y 20104 With
these targetghe central governmernhenallocatedbinding abatement requiremerttseach
province, and provincial governors were requiresign individual responsibility contracts
with the central government, documenting their emission abatemenipietsil Provincial

governors then assigned abatement mandates to prefectures and counties and used local

2S0OD can be transl ated as ptthoe ofirS ctiheen tiiSfcii ce nDe vid lco pDreevre
3 The most recent expansion of the system, under the administration of President Xi Jinping, further increased

the number of stateontrolled monitoring stations to 972 (with 766 for major rivers, and 206afes and

reservoirs) in 2015.
4 Source http://www.mep.gov.cn/gzfw 13107/zcfg/fg/gwyfbdgfxwj/201605/t20160522 343144.shtml
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environmental performanaong with othercriteriato assess and promote local government
officials. Water pollution control thus became a political task for local goverrenent
Becauseivers flow from higher to lower elevation water quality monitoring stations can
only capture emissianfromtheir upstream aread¥ut notfrom downstream areat/nder the
new political regime, local officialsvould have strong incentigeto enforce tighter
environmental regulations mpstreanregions tharnin downstream regiondVe expgoit this
spatial dscontinuityand estimate the causal impact of tegtwater pollution regulation on
productivity. Becausethe Chinese government did not enfostengent industriapollution
controls until 2008, we expectthat if water quality monitoringindeed influences firm
productivity, this effectshould be weakesr norrexistentbefore 2003andbecomestronger

afteward
B. Location Choice of Water Quality Monitoring Stations

The purpose of establishinga water quality monitoring networkis to achieve a
comprehensk under standing of t he Themonmidrimgyystem sur f a
cove s t he count lakes) and meserivoos. Monitoringestasorshould be set in
a way thatcanis spatially represeative to its neighborhoodvater bodes and ca properly
reflect changes in watgmllutantsovertime. Consequentlythe locatios of the monitoring
stations werehoserbasednainly on hydrologicalconsiderations.

According to the MEPthe monitoring stationsnust beplacedin rivers with steady fis,
wide watersurface, and stable river bejand mustavoid stagnant water argabackwater
area, sewage outfallsrapids and shallow watefhe MEP also requiresthat monitoring
stationsbeestablished o s e r-v e rplrposanemsuring thashot-termneedgsuch as
avoiding or targeting pollution from a specific region or a specific firm) cannot be
accommodated

Additionally, en importantfeatureof stationplacements thatthe MEP requiresnonitoring
stationsto be built close tohydrdogical stations which enable the governmento combine
hydrological parameters with water qualityormation Most hydrological stations were built
in the 1950s1970s and are used to collect meteorological and hydrological data.

In this paper, w focus on thestatecontrolledsurface wateruality monitoring stations.
Statecontrolledstationsareestablished and supervisby theMEP andthe State Councibf
China The water quality readings from thiatg controlledstatiors are reportediirectlyto the

MEP to ensure data qualityyearly averagevater qualityreadings fromthe stationsare
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reported inthe environmental yearboolkandthe central governmentsedthese datéo assess
theenvironmental performanad local governmerst

Aside fromstatecontrolled stations, there are also local water quality monitoring stations
and special stationdesigned tomonitor the emissions of majopolluters. The special
monitoring statiors are placed immediately downstreamfrom the polluter to monitor its

environmental prformanceWe do not have data for thetypes ofstations.
C. Research Design and Econometric Model

We exploit the spatial discontinuity in regulation stringency around water monitoring
stationsto estimate the causal effect of regulation on THie disancebetweera firm and a
monitoring station serves ake running variableWe examine whether firms located
immediately upstreamfrom the monitoring station have lower productivity thaajacent
downstreaniirms. This empirical strategig similar in spiit to recent works that also explsit
the flow of pollution along rivers for identificatigfiKaiser and Shapiro, 2017; Lipscomb and
Mobarak, 2017)but is novel in that it utilizes a unique spatial discontinuity setting arinend
monitoring statios.

The identifying assumption of our research design is,tbae to spatial adjacencfitms
locatedimmediatelyupstream and downstreawh monitoring stations should hmalancedex
ante along variousdimensions butwill differ from each otheonly becausaipsteam firms
become more tightlyegulated

The discontinuity can be estimated bgth parametric and ngwarametric approaches.
Gelman and Imbens (2017) show that the parametric RD approach, which uses a polynomial
function of the running variablas a cotrol in the regressigriends to generate RD estimates
that are sensitive tthe order ofthe polynomial andhavesomeother undesirable statistical
propertiesAs a result, stimators based on local linear regression or other smooth functions
are often peferred becauseéhey can assign larger weightsobservationshat arecloser to the
threshold andherefore caproduce more accurate estimad& thus focus oa local linear
approachwhich can be estimated by the following equation:

(1) "YOO | Oé0& | OQi 0] Ot 0EOQi 66 0 -
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whereTFPjk is the total factor productivity of firmin industryj aroundmonitoring stationk.
O¢€ U ¢ is an indicator variable that equals 1 if fiinfin industryj) is downstream from
monitoring stationk, and 0 otherwiseO Qi dneasures the distance between firrand
monitoring stationk, andh is the bandwidt length (i.e., the acceptable distance from the
discontinuity for sample inclusion).

To account for industry andlocationspecific TFP determinantsn the nonparametric

estimationswe control forindustryand monitoring statiofixed effectso and 0 . The model

essentiallycomparesupstream and downstreainms in the same industrground the same
monitoring station.The estimation of this neparametric RD model with fixed effects is
implemented using théwo-step approach suggested yee and Lemieux (2010)where
industry andstationfixed effectsare absorbelly running an OLS regression of TFP aset
of industry andstationspecific dummies, and then apply the fparametric estimations on the
residual TFP obtained from OLS estimatfo

The choice of the optimal bandwidthinvolves balancing the conflicting goals of focusing
comparisons near the monitoring statiombere the identification assumptionnsst likely
to be satisfiedand providing a large enough sample for reliable edton. In this study, we
rely on anMSE-optimal bandwidtth proposed by Calonico, Cattaneo, and Titiuj@®&14) and
Calonico, Cattaneo, Farrefforthcoming, and experiment with variousernel weighting
functionsto ensure robustness

The standard erras clustered at the monitoring station level to deal with the potential spatial
correlation of the error term, as suggested by Cameron and Miller (2015). We alsowsytwo
clustering at both the industry and the monitoring station leredsget quantitavely similar
standard errors.

As away tochecktherobustnesswealso estimata parametric RD model:
(2) YOO | O£0¢ QOQi 6 OE0DEQOQI O 6 U -
whereTFPjk is the total factor productivity of firmin industryj aroundmonitoring statiork.

"Q0"Qi 0is a polynomial in distance between fifrm industryj and monitoring statiok.
The polynomial functions interacted withthe treatment dumy to allow flexible functional

form on both sides of the cutoff, adbdandy areindustry andstation fixedeffects.

5Lee and Lemieux (2010) arguhat, if there is no violation of the RD assumption that unobservables are
similar on both sides of the cutoff, using a residualized outcome variable is desirable because it improves the
precision of estimates without violating the identification assionpt
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[Il . Data and Summary Statistics
A. Data

Our analysis is badeon several datasetisat together provideomprehensivéenformation
on the sociceconomicconditionsof townshipsthe productionand performancef industrial
firms, andemissios from heavy pollutersenteredaroundthe monitoring statios.

Water Quality Monitoring Stations

We collectdatafrom water quality monitorig stations from surface water quality reports in
various environmental yearbooks from 2afBL0, which include¢he China Environmental
Yearbooks, China Environmental Statistical Yearboaksd China Environmental Quality
Statistical Yearbookdata availake in more than twdlifferent sourcesare crossvalidated
The number ofstatecontrolled monitoring stationsvaried slightly betweenyearsin these
reports ranging from 400 to 500 stationdVe geeodel all the water quality monitoring
stations.

Annual Survey of Industrial Firms Database

Our firm-level TFP is calculated using data from #enual Survey of Industrial Firms
(ASIF) from 2000 to 2007The ASIF data include all therivateindustrial enterprises with
annual sales exceeding 5 milli@hineseyuan and all the statewned industrial enterprises
(SOEs) The data areollected and maintained by the National Bureau of Statistics (NBS) and
contain a rich set of information obtained from the accounting books of these firms, such as
inputs, outpus, saks, taxesandprofits.

The detailed production information allows usctistructTFP measuregor each firm in
each yearThere are severapproachedo estimating firmlevel TFP and each requires
different assumptions\(an Biesebroeck, 2007 In this paper, weusethe consistent semi
parametric estimat@uggested b@lley and Pakes (1996)he OlleyPakesnethodaddresses
the simultaneity andselection biasem estimatingTFP and has beethe most widelyused
methodfor the investigation of Chineserhsd p r o dino the litenaturd(sge for example,
Brandt et al., 2012; Yang, 201%)singOlley-Pakes TFRestimatorensurs that our estimates
can be compared with previous on&be details of estimating TFP using the Olfegkes
method are discuss@dAppendix A.For robustness checkse alsoconstrucialternativeT FP



measurebased omtherestimators, such as thekerberg et al. (2015) approach and the naie
labor/capital productivity measures

The ASIF datavereused in several previous sted A well-known issueis thatthe data
containoutliers.Wefollow standard procedur@®cumentedh the literaturgo clean the data
We first drop doservations with missing key financial indicatarswith negative values for
value added, empyment,and fixed capital stockVe thendrop observations that apparently
violate accounting principles: liquid assets, fixed assets, or net figeets larger than total
assetsor current depreciation largdran cumulative depreciatioRinally, we trim the éta by
dropping observations with values of key variables outside the rangkedd.5" to 99.5"
percentile.

The ASIF data have detailed addriegsrmationfor sampled firms in each year. We geocode
the location of the 952,376 firms that appearedaestimple and then compute precise distance
measures between each firm andtitsestwater quality monitoring station.

Becauseour research design is fundamentally cresstional despite having data for
multipleyearsin the baseline analysisge collapse theanulti-yeardatainto acrosssectonand
apply theRD estimators tat. The interpretation of the coefficientsthereforean average
effectthat persid for years.To fully utilize thedynamicstructure however,we alsoapply
nontparametricRD estimators to different yeaend examine how the stiontinuity changes
over time.

Environmental Survey and Reporting Database

To investigatevhether water quality monitoringdeedreducesvaterrelatedemissiors, we
collect firmlevel emission data fror® h i nEavdr@enmental Survey and Reporting (ESR)
databasewhich ismanagedy the MEP

The ESRdatabase is the mostraprehensive environmental dsgain Chinahat provide
firm-level (polluting-source level) emissios for various pollutants.The ESR database
monitors polluting activities of all major polluting sources, including heavily polluting
industrial firms, hospitals, residential pollution discharging units, hazardous waste treatment
plants and urban sewage treatment pldntthis study, we &eponly the ESR firms that are in

the sameollutingindustries as the ASIF firms.

6 More details about the construction and cleaning processes of the ASIF data can beHgieidand Klenow
(2009), Songet et al. (2011), Yu (2015), and Huang et al. (forthcoming)
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The sampling criteria in the ESRatabases based on the cumulative distribution of
emissionsin each county. Polluting sources are ranked based on their emissiondevels
differentficriteriapollutantso and th@ejointly contributingto the top 85% of tota#missions
in a county are included in the database. In this study, we use ESR data between 2000 and
2007, the same period as the ASIF database.

Duringoursamplepei od, t he fA odhandgeeaveinae. Ip2000,)onlghenmcal s
oxygendemand (CODgmissionsand sulfur dioxide (S§) wer e A c r i.oPadlutiga pol |
sources included in the database weereforechosen based on theontributions taCOD
emission®r SQ emissionsin 2007, ammonia nitrogen (NH and NOx al so beca
pollutantso

Amongall the pollutants, COD is most relevant to this stu@pD isa widely-usedwater
quality indicator that measures tl@mount of oxygen requiretb oxidize soluble and
particulate organic matter in watelt assesses the effect of discharged wastewater on the water
environment. Higher COD levels mean a greater amount of oxidizable organic material in the
sample, which redusalissolved oxygen leais. A reduction in dissolved oxygen can lead t
anaerobic conditions, which adeleterious to higher aquatic life forms.

We focuson COD emissiondecaus€OD is thefirstwaterr e | at e dpofiutantusede r i a
by the MER and the government explicitset a 10% abatement target for C&missionsn
thellthFive-Year PlanWe also corroborate the findings on COD emissions by looking at the
amount of wastewater discharge.

Like the ASIF, this dataset also includes detailed addmnémsnation We therefoe geocode
all the ESR firms and compute their distargto the nearest monitoring siteThe dataet
allows us to construct total emission levels and emission intensity measures (emissgon level
divided by total output valuddr large polluters in eachoanty.

Township-level Socieeconomic Data

The National Bureau of Statistics (NBS) conddbesi Towns hi p Conditi ons §
on an annuabasis. It is a longitudinal survey that collects towndbaiel socieeconomic data
for all thetownships in Cma.We have access to the TCS data for 20 provimc2902and
use the townshievel data tassess similarities betweepstreanand downstreanownships

Geodata

" For example, COD abatement is used by the central governmehiraf as a key performance indicator to
assess local government efforts in environmental protection. In the 10th and 11WekivBlans (2002005
and 20062010), COD was used as a primary criterion (along with ammatriagen) to set national abatement
targets and conduct performance appraisals.
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We obtainedtownshiplevel GIS boundary data 2010 from the Michigan China Data
CenterWeuseGl S data of Chinabs water basin syster
We use GIS elevatiodatato identify upstream and downstream relationshiggese GIS
datasetsrethenmatched to ougeocodedownship and firndatessets

B. Data Matding

The datawe have compiledare to our knowledge, the most comprehensied
disaggregatedtollection ever assembleah water pollutionand firm-level economic and
environmental performanc@ China The matching process involves several stepd is
illustratedin Figurel.

When constructing the dataset for analysis, we first have a layer of the water basin system
overlaid on the townshi@1S map. Then, using each monitoring station as a center, we draw a
circle with 10 km radiuslocate all the geoated firms (from the ASIF dataset and the ESR
dataset) on the magndidentify all the firms that fall ira 18km circle After that, wecalculate
each firmds di stance tlasomeregiomsdniostlgiathas@oni t or i
coastal areaghe distribution of monitoring statiomsin bevery dense and multiple tributaries
or branch rivers merge into the trunk streafs a resultsome 16km circles overlap with
each othermaking it difficult to identify upstream and downstream relatignsHie. an
adjacentupstream firnfor onemonitoring station can be in the adjacent downstream of another
monitoring station)We thereforeexclude these water monitoring stations from our dathset.
some lesgleveloped regions (mainly in the Westereaa), the distribution of large industrial
firms is too sparsandsome 16km circles around monitoring stations contain no firms from
the ASIF or ESR datasets. We also drop all such monitoring stations from our sabapie.

a quarter of thenonitoring sations are locatedn lakes or reservoirs, and we drdgem as
well. After these exclusionave are able to uskE61 water quality monitoring station3.he
distribution of our sampled monitoring stations is representédjure 2.

For each firm kept in #h sample, we project its location onto the nearest river basin, and
extract the elevation of that projected point. Then, we compare this elevation to the elevation
of the adjacent monitoring station, so that we could decide for each firm whether ihés in t

upstream or downstream of its adjacent monitoring stétiothe endye are able t@ssemble

8 Since township is typically the lowest level of policy implementation, we also look at firms in the same
townships but fall outside of the n circles. We keep these firms in the baseline 10 km sample smdradw
that our results are robust to using much smaller bands (5 km).
12



a geocoded dataet that include township-level socieeconomic conditions, firpevel
production and performancand firmlevel emissions Our sampleincludes 19,150unique
ASIF firms and 9,888 ESR firms from 544 townshipscentered byl61 water quality
monitoring stations.

We attemptedo match firmsn the ASIF datdase witHirms in theESR datbase. However,
because these two datasets use very diffe@mplingcriteriaandaremanaged by different
government gencies, & wereable to matctonly 10% of ASIF firms with ESR firmsThe
matched samplis too small for usto draw anycrediblestatistical inference As a result,n

subsequent analysise amalyze thesdéwo datasets separately.
C. Balance Check

The underlying assumptidor our RD designs that except for environmental regulation,
otherdeterminant®f TFP change smoothly around theonitoring stationsAt the firm level,
environmental reglations mg affectmanyproduction deisions, making itifficult to test this
assumption using firdevel data which primarily contain timevarying variablesThe only
two (arguablytime-invariant covariates in the ASIF data, itef i r m e s tdatbd & sdme n-
Af i rm o wnogaresndeegpsmoothly @istubed around monitoring stations, as shown
in Table 1 Panel A,

As discussed irsection Il Part A, surface water regulation was not strictly enforced until
President Hu Jintao came into power in 2a03s water monitoring stations shouddt affect
upstream firmsin the early years of our dafawe thuscompareupstream firmswith
downstream firms usinyear2000data(the first year of our sampl@nd test the differense
in value added, profit, enhpyment, capital, intermediate input and t&s. can be seen from
Panel B in Table 1, the vast majority thfesecovariates are smoothly distrilea across
monitoring stationsThese resultsare consistent with the assumption that upstream and
downstreamifms are identical alonghanydimensions.

In addition to the balance tests using filenel data, we also conduct balance tests using
township level data, whidncludea rich set o7ariableghatareimportantfor firm production,
to provide additional \edence that upstream and downstregggionsare comparable in
aspects other than water regulatidhe results are summarized in AppentiableS2.In Panel

A of Table S2 we see thabasic township characteristiese balancedncluding township

9 The dynamic analysis of the RD results will be discussed in the Section V Results..
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area, sable area, distance to county center, whether the township is aagad town,
whether it is a ethnicminority town, the number of residents, and the number of administrative
villages1® In Panel B, wetest whether basidnfrastructuremeasures arsimilar between
upstream and downstream townshi#sgain, the length of roads, number of villages with road
access, number of villages with electricity access, and numbilages withtap water access
aresimilarbetween upstream and downstre&mally, production requires labowe examine
whether human capital diffesignificantly betweenupstream and downstreawwnships In
the township dataye have tworelevantvariables:the number oprimary schools anthe
number of students enrolled in primaghools.Again, we find no evidence that upstream
townships differ from downstream townshipghis regard

Theresultsn Table land Appendix Table S2eencouragingas they indicate thapstream
and downstrearfirms are weHlbalanced for both timewvariant characteristics drpre2003
covariates, and these firms are locatetbwnshps that are highly comparabM/hile it is, of
course, impossible toompletelyrule outthe presence afnobservedactorsdiscontinuously
change across thmonitoring stations thesebalance checkiend additional credibility to our

research design.

V. Results
A. Effects of Water Quality Monitoring on TFP

We begin the analysis lgyaphicallypresenting our main finding8pplying the OlleyPakes
method we estimatethe log TFP for eachsampledfirm. Figure 3 plotdog TFP (or residual
log TFP)against distance monitoring stationEach dotrepresergthe averagéog TFP for
firms within a bin of distance their 95% confidence intervals are also presentefittéd
function isthenoverlaidon the graptio illustrate thaliscontinuity at the monitoring stations.

We divide hefirms in ASIFinto polluting indwtriesandnon-polluting industriesbased on
the definition of polluting industries uséy the MEP! In Panel A we present the RD plot
for log TFPin the polluting indgtries In Panel B we show the RD plot for residulmlg TFP

in the polluting indstries The difference is thahonitoring stationand industryfixed effects

0 Anoldregionrefersto@o mmuni st Partyo6s revol utionaisgrgahizzase r egi
by one village committee and may include several natural villages.
11 Details of the polluting and the ngolluting industries are summarized in Appendix Table S1.
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are absorbeth the residualog TFP panelln both panels, we seesharpchangein TFP at
precisely the locati@where the water quality controls take eff@dte TFP of upstream firms
is significantly lower tharthat of downstream firmsn polluting induwstries In contrast in
PanelsC and O wedo not observeimilar discontinuitiesn TFP in nonpolluting industries

Table 2 quantifiesthe graphical findings ifrigure 3. Panel A presents the R&stimates
without any controlsfor both polluting and nopolluting industriesWe see hat polluting
firms located immediately downstream from monitoring stations have higher TFP, but there is
no TFP difference for the ngwolluting firms. The estimates are not statistically significant
because of large standard errors.

Our sample cover$6l water quality monitoring stations Bd manufacturingndustries A
simple RDregression, as reported in BaA, would compare upstream and downstream firms
from different clusters (monitoring stations) and industries, creating noigee statistical
inference. To address this issue, control for station fixed effects in Panel B, and control for
both station and industry fixed effects in PaneBZdoing so, we effectively compare the TFP
differences station by station amalustry byindustry and hen average the differences across
stations and industrie®As we control for thefixed effects, the RDcoefficients get more
precisely estimated, and thus become statistically significant.

In our preferredgpecificationswhich account folbothstationard industryfixed effectsthe
estimatedyapin log TFPbetween upstream and downstream firarsges from @B1to 0.3
for the polluting industriesThese estimates imply that the water quality monitoring has
reduced upstr eam26fP (e'H4)a029.FoRe’F-8.vel s by

Comparing the RD estimates in Panels B and C to Panel A, we see that the magnitudes of
the estimated impacts are remarkably close. This is important because it suggests that station
and industryspecific determinantsof TFPvels whi | e bei ng 1 mportant
TFP, areuncorrelated with the treatment statkkwever, ncluding themcan significantly
reduce the estimated standard errors of the treatment effects.

The estimates for the ngolluting industries arelose to zercand none of them are
statistically significantFor both sets of resultdi@ RD estimates arebust to different choices

of kernel functions.
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B. TFP Effects b¥irm Ownership Size and Firm Age

In Table 3, we explore whether the effectvediter quality monitoring on TFRariesby
ownership firm size and firm age In light of the findings reported in Table 2, vi@cus on
residual TFRwith stationand industryfix ed effectsabsorbed

In Panel A, we estimate the RD by firm ownership type famd that the baseline TFP loss
is drivenmainly by private Chinese firms. Water quality monitoring has no significant impact
on the TFP of statewned enterprises (SOEs) and foreign firms. This result may reflect the
fact that environmental regulatioase not binding for SOEs or foreign firnas a practical
matter;they generallyrave greater bargaining power over local governmerdghus face less
stringent enforcemenfnother possible explanation is that SOEs and foreign firms generally
have supedr exante environmental performance compared to private Chinese firms and
thereforearenot affected by tighter regulations. However, given the relatively small number
of observations for SOEs and foreign firms in our sample, thessasaple null resultshould
be interpreted with caution.

In Parel B, we investigate the impact heterogeneity by firm sizeChina, the government
adopts a policy strategy call ed fGzhaasDai ng tF
Fang Xia® )i.Gr as pi ng tnéthat polcymakers maimgy éarget large enterprises,
while Aletting go of the small d means that
enterprisesThe phenomenon has besitdely documented in the context of economic reforms
and policy implement&on (see, for example, Hsieh and Song, 2018)environmental
regulation, many policies are also designed in such a way that larger firms need to meet larger
abatement targeté We investigate if this phenomena@ntrue inour settingWe definesmall
firms as having less than 50 employaed the rest areategorized akarge firms.The results
in Panel B show thahe TFP impactsarestatistically significant only for larger firm# other
words,thed Gr aspi ng t he Lar ge a nategyseemstioibapgliedGdm of t
the context of water quality regulations, too.

In PanelC, we compare the TFP loss fiym age.We are interested in whether old firms and
young firms respondiifferently to water quality monitoringWe define new firms as fins
bornin or after 2003 whenC h i neaviiommental regulations became stringaife then

estimde the discontinuities separately for old and young fisiag pos2003 dataWe find

2Seef or exampl e, @ ThQo nfsoupmilrOg OENOt eErnphrrdgares orftyrlaogg firmsm, 0 wh i
to abate carbon emissiorgtp://www.ndrc.qov.cn/zcfb/zcfbtz/201112/t20111229 453569.html
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that the TFP loss caused by water quality monitassgatistically ggnificantfor both old and

young firms This findingisinconsistentwith he fAgr andf at h,emwhichrew p henc
environmental policies are often designed or implemented in such a way that olderafirms
beexempted from tighter regulatiarsecase the cost of retrofitting existing facilities is higher

than that of building new sources with cleaner technolbgy. t he context of ClI
guality monitoing, both young and oldpstream firm$ave beeminder tighteregulationthan

downstream fims since 2003n addition, the magnitude of treatment effects for young firms
established after the regulation became stringent in 2003 is comparable to that of old firms,
suggesting that the selective locaibehoicesof young firms arenot driving tre baseline

findings.
C. Results by Year

The stringency of water quality regulatiohas changed substantially duriogr sample
period. Specifically in 2003, President Hu Jintao proposed th&ci ent i fi ¢ Out |
Devel opment @ddiesthetpesairtgiewieonntertahalliengesin China. In the
same vyear the MEP upgradé the surface water quality monitoring system.

In addition, garting in 2006, COD abatemeriiecamea key indicator in evaluating local
environmental performancevhich were expliitly linked to political promotions

We thus hypothesize that the TFP effect of water monitoring shouhddmsified after 2003
and 2006, respectivelin Figure 4, we provide RD estimates separately for each year. We find
that the TFP differences betare upstream and downstream firms exactly match the policy
changes we have discuss&gpecificaly, the estimate is close to zefrom 2000 to 2002, and
becomes larger in 2003, the year Presidentdtk office The effect becomes statistically
significantstarting in 2006thefirst year of the 1thFive Year PlanThe corresponding results
are summarizeth Table4.

Thefinding that themonitoring effect waglose to zero and statistically insignificant prior
to 2003is consistent with the balancestepresented in Table, Jandfurther justifiesour
identifying assumptionin the absence difighter water quality regulations, upstream and
downstream firms arounthe samewater quality monitoring statiohave similar levels of
productivity.

The dynamic patrn of the RD coefficiestis also reassuring in terms of ruling out
alternative explanations: to the extent that one thinks the baseline results are driven by

confounding factors, such factors have to be specific not only to upst®alownstream
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firms, pollutingvs. non-polluting industries, but also specific to the timing of two independent

political events happened in China in 2003 and 20&pectively
D. IV Results Using Hydrologic&8tations

Our qualitative discussions on the rules of settipgnonitoringstations, the balance tests
of firm-level andtownship levelariablesthefinding that thediscontinuityis only evident for
polluting industriesand theresultthat the discontinuity only emerges after 208iBsuggest
thatthe identifyng assumption iour RD designis likely to hold.

Neverthelessone may still be concerned abothie endogenous location of monitoring
stations. For instanca,politically connected polluting firm has strong incentives to lobby the
local government, stinat the monitoring station would be established upstidahat firm If
these connectedriins also receiveotherforms of benefitsfrom the governmenthat could
affect their productivitysuch as subsidies or loansy RD estimates would be biased.

In this sectionwe useaninstrumentaVariable (IV) approacto directly address this concern.
We exploit the fact thgtwhenmonitoring stations were set up, local governments typically
attempedto locate them closer to existifydrologicalstations sothatdata,equipmentand
technicianouldbe sharedh order to achieveconomie®f scale in water monitoring.

A hydrological station collects hydrologicdatasuch as water levglflow velocity, flow
direction, waves, sediment concentration, waetderatureandice conditions, as well akata
on meteorological conditions such as precipitation, evaporation, air temperature, uandit
pressure and winddecauséiydrologicalstations were set up between f#50sand1970s(a
period when China baly had any industrial pollutions at andbecauséher locations were
chosenbasedpurely on hydrological considerationt)eselocationsshould beorthogonal to
thefuturesociceconomic coditions of their neigborhoodsAll the hydrological stabns were
built and supervisetly the Mnistry of Water Resources (MWR), instead of the Ministry of
Environmental Protection (MEPgnd play no roles in collectingany measures of water
pollution.

Therefore, one would expect that, except ifuducing the esablishment of monitoring
stations, the existence of a hydrological station alone should mawmal impact on the
production and emission behaviors of adjacen
a d o whethefia firm is in the near upstnearea of a hydrological station a sstranrental
variable(IV) f o whether a firm is in the near upstreameaof a monitoring statiom and

estimate a 2SLS to quantify the impacts of water quality monitoring on TFP.
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Empirically, we estimate the folleing first-stage regression:

(3) YR O &E | JYnOcEQl _ A f

where™Y1) 0 €Gis a dummy variable indicating whether fifn industryj is in thenear
upstreamarea (10 km) of monitoring statidg "Yn) "OwéQiis a dummy variable indicating
whether firmGn industryj is in the near upstream ar@d® km)of a hydraestationk; _ andA
represenindustry andnonitoring site fixed effestand;  is the error term. Wédnen estimate

the second stage regression:

(4) YO 1 JYynbdbée _ K f

where’Y'® is the TFP of firmiGn industryj nearthe neighborhood of monitoring stati&n
Yi) 0 ¢ ¢ is the predited value from the first stage regressiorandA are industry and
monitoring site fixed effectand]  is the error term.

Theregressiomesults are presented in TableWeestimate the effects separately for firms
in the pollutingindustriesand for firms inthe non-polluting industries First, we find thathe
locations ohydrological stationsanstrongly predicthe locations o#vater qualiy monitoring
stations(Columns 1 and®): if a firm is near the upstream of a hydrologistdtion, it is also
more likely to near the upstream of a monitoring stafldre 2SLSestimates show thaking
in the neawpstreamof a watermonitoring station decreases thEP ofa polluting firm by
0.35logarithmic unitfColumn2), butit does noaffectthe productivityof non-polluting firms
(Column4).

Note that lhe regressionesuls in Table5 are notreadily comparable to tise in Table 2, as
these two approaches use very different sourcearationin the dataandestimatedifferent
treament effectsvith different identifying assumption3heRD designestimates the average
treatment effect at the cutpffhereaghe IV estimateghelocal average treatment effect for
firms near a hydrologicatation Neverthelesgheclosenessfthemagnitudes of thestimates
betweerthe twoapproachef0.31 t00.35 versus0.35), andtheconsistentindingsin both sets
of results provide additional suppt to the causalrelationship between water quality

monitoring and firm TFP.
E. Spillover Effets

Spillover effecs, i.e. water quality monitoring somehow alsffectingdownstream firms,

would notbea concernn a marketvith perfect competitioowherethere are many firms and
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the outputmarketis unaffected by local environmental regulation. Hegre in a market with
imperfect competition or more complicated structures, spillovers can exist. In our empirical
setting, both positive and negative spillovers can emerge, depending on how upstream firms
and downstream firms interact.

If industries arénighly concentrated and their major producers are geographically clustered
near the water quality monitoring stations, then imposing tighter environmental regulations on
upstream firms would cause positive spillovers to downstream firms. The reasomsfale. t
First, because upstream and downstream firms are the main producecsrguaditorsm the
market, increased production costs for the upstream firms will raise the market price of their
products.Competingdownstream firms will thus benefit becauskthis change irmarket
conditions not just because of the environmental enforcement affecting their upstream
counterpartsSecond, tighter environmental regulations also may cause inputs, both labor and
capital, to move toward the downstream firmgntire productive factors flow to downstream
firms, their TFP will be highefor this reason as well

Negative spillovers will emerge when clustered firms are collaborating instead of competing.
This is particularly true if clustered firms are verticallyeigitated along the supply chain. If
(geographically) upstream firms produce inputs for downstream firmsyicar versa
environment al regul ations that increase upst
make downstream firms less competitive.

In the presence of spillovers, regardless of the sign, our baseline RD estimates can still be
properly interpreted as the partial equilibrium effects of environmental regulation on
productivity. However, when we extrapolate these estimates to the wholegthmexistence
of a positive spillover effect will exaggerate the economic costs of regylafiie a negative
effectwill attenuate the estimated costs.

To assessvhetheror to what extenur findingsare confounded by the potential spillover
effeds, weconduct dormal test using placeldownstream firms. Specifically, we fingplace
the actual downstream firms by thbest matchefom the sample dirms that are noin the
neighbarrhoodof any monitoring stations, based on {803 data. Wehenre-estimate the
regressiordiscontinuities for the matched firmsing post2003 dataThese matokd firms
serve as placebo firms whidre not affected by the potential spillovetsetween actual
upstream and downstream firmi$e intuition is thatif the spillover effects armsubstantial
(downstream firms are not affected by monitositegions$, the placebo firmshouldhaveTFP
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similarto the actual downstream firmssidg placebo downstream firms should lead to results
that are quantitatively siilar to the baseline estimates.

In practice, we take the p003 collapsed crossectional data and use a nearest neighbor
matching strategyhat finds the bestatched firm from the pool of firms that are located
outside the 1&m radius of the water nmitoring stations for each downstream firfrhese
placebo downstream firms resemble the actual downstream firms in terms of TFP, industry
type, and industrial output value before 2003. We then replace the actual downstream firms by
the placebo firms in thpost2003 sample and estimate the regression discontinuities.

The results are reported in Table 6. Upstream firms have significantly lower TFP than
placebo downstream firms, suggesting that the baseline findings are not driven by a positive
spillover efiect on the downstream firms. Vitacus our discussion athe RD estimates after
station and industry fixed effects are absorbbeBanel B. Compared with placebo downstream
firms, upstr eia0d8toD.6lmuEtdhigheo Thecstimdtes areightly larger
than those in Table 3, but the differes@estatistically indistinguishablélhat impliesthat,
if there may exissome spillover effect, this effeshould be slightlynegative Consequently,
the estimates Tables 2 will only understatee economic costs of water pollution regulation.

F. Sorting

Environmenal policiescan affect firm production plas and ther location choicesin
particular the pollution laven hypothesigPHH) positsthatpolluting capité would flow from
places wih more stringent environmental regulations to plagds lessstringent regulatios.
This issueis important because will affect the interpretationof the RD estimatesFor
example,if water qualitymonitoringcauses moreolluting firms to relocate tdownstream
areasand if these firms have highefFP, our RD estimates will be biasedpward
Alternatively, if polluting firmsemergingdownstreamntend tohavelower TFP and therefore
would beunlikely to survivein theupstream), our RD estimates wik biased downward.

In this section, wexamine the potentiaortingbehavioursamong thepolluting firms As
shown inPanel Aof Figure5, using the baseline sample (collapsed caesgion for 2000
2007),we find thatthere is no discontinuity in the sliribution of polluting firms around the
location of monitoring stationgollowing Cattaneo et al. (2017a, 2007b), we further conduct
data driven manipulation tests on the density of polluting firms around monitoring stations.
The results, which are sumnmzed in Appendix Table S3lso suggest that no meaningful

sorting behaviours exist in our data.
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These results seeto contradict to the conventional wisdom that firms should relocate in
response taoight environmental regulations, especially when tHeiehcy loss is largeWe
offer two explanations. Firstecall that in Table 3 the regulation impacts are only statistically
significant for the bigger firms. Sorting can be costly for large manufacturing firms because of
large fixed asset investment. ihg our field trips, wealsodiscussed with policy makers at
different levels and many firm owners and learnt that it is not easy for large firms to relocate,
both economically angolitically, because thefire a large number of employees and are
importent contributors to local fiscal revenue.

Thesecond explanation, which can be empirically tested, is that we only captureitiie sh
termimpacts In Table 4 we see thathe regulation effect only emerged after 2003 and did not
become statistically diffent from zero until 2006t seemshighly likely thatwhile in the short
run firms wereunable to relocate, theypulddo so in the long rurTo test this hypothesis, we
take the ASIF data in 2013, the most red&®tF dataavailableto us and rerun thesame set
of densitytest.!® As shown inPanelB of Figure 5 in 2013, the density dhe polluting firms
becomesslightly discontiruous at the cuoff: fewer polluting firmsare locatedin the
immediate upstrea of monitoring stations. This finding suggeshatmore polluting firms
leaving(or less firms emerginig) the upstream regione avoid tighter regulatiom the long
run. The corresponding densitgsts resultare reportedh Panel B of Appendix Table Shd
we also see a tendency thatver poluting firms are located in the immediate upstream of the
monitoring stations.

Given these results, we concluithat water quality monitorigpdoes noinduceimmediate
sorting of firms, so theestimatedeffect of regulation on TFkh previous sectionss not
confounded by firms6 r elfionsaahielocatand soangneeds r |,

to be taken into account in assessing the inggdcegulations.
G. Robustnes® Different Specifications

We check the robtisess of our findings in Tabl7. In Panel A we reestimate our models
using a metbd proposed byalonico, Cattaneo, and Titiun{2014)in which local liner
regression est-¢ mat e biaahm@sulibggronfidnaica ef bandwidth.

They also suggest an alternativeethod for calculating standard errors that is more

BThe nacdeadd variabl e i $Fdatasétyntil 2007 therefole,|data in tine latehyearsA S
could not be used for TFP analysis.
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conservative thathe conventioml procedure Using thesalternativemethods, we generate
results thatire qualitatively similar to the results featured in our main analysis.

In Pané B, we usealterndive bandwidth selectsr The bandwidth chosen in our main
analysis is based ane common MSEMean Square Errproptimal bandwidth selector for
both sidesacross the cutafiWe supplement thignalysiswith five other bandwidth selectors:
(1) MSEtwo: two different MSEoptimal bandwidth selectors (below and above the cutoff)
for the RD treatmengffect estimator(2) MSEsum:one common MSBptimal bandwidth
selector for the sum of regression estimates (as oppogbkd ddference thereof); (3LER
(coverage error ratg-optimal: one common CERptimal bandwidth selector for the RD
treatment effect estimatof4) CER-two: two different CERoptimal bandwidth selectors
(below and above the cutoff) for the RD treatmefféct estimatgrand (5)CER-sum:one
common CERoptimal bandwidth selector for the sum of regression estimates (as opposed to
the difference thereof}? The results remain the samegardless of théandwidth selector
used

In Panel D, we conduct@acebaestusingfifaked monitoring stationsWemove the original
stationsupstreanor downstreanby 5 km orl0 km and reestimate the RD modelgVe find
that the discontinuity iTFPis only evidentat actualmonitoring stationsand not athe fake
stations

In the Appendix,we presenimore robusiess checksn Appendix Table 8, we report the
RD estimates using the parametric approach, Equation (2). WeuUamditativelysimilar
results: water quality monitoring deereases
polluting firms. However,te estimates from the parametric approach are more sensitive to
the choice of the polynomial function form and inclusion of different samiplégppendix
Table $, we use an alternative TFP measure suggestéahsrberg et al. (2015s the

outcome vaeble, and again the results remamchanged

V. Channels What Happenedto the Upstream Firms?
A. Regulation anérirm Production

How do firms respond to tighter environmental regulatidnghis sectionwe examine the
channels through which environmanit regul ati on . &ofrdtienalizesthef i r ms «

1 Please refer t€alonico, Cattaneo, Farrell (forthcoming) for technical details.
23



baseline findings anduide the following discussiongie presenta theoretical frameworko
illustrate how environmental regulatiorcan negativelyaffect TFP in Appendix B In this
mode] firms need taise extra labor anchpital to clean up emissisandthegovernment can
enforcetighter environmentalregulationby increasingthe emission tax Facing a higher
emission taxfirms need tdiire morelabor and capitaor emissiorabatementut these exér
inputs do not directly contribute toutput production.As a result, ighter environmental
regulationwill lead to a reduction irf i r TRB. 0

In Table8, we estimate the impacts of water quality monitoongeverakeyvariablesand
test whether thedindings areconsistent with our theoretical predictioRanel Aof Table 8
summarizes the results foutputrelated measuresalue addedand profit. Although the
effects of water moniting arestatisticallyinsignificant we see a tendency that downesm
firms earn more profit despite not producing more prodadeané¢ B of Table § wefocus on
labor,capital and intermediate inputabor is measured by the number of employéésfind
that upstream firms hire more emploge€l6%) but the effect i statically insignificant.
Upstream firms also tend to use slightly more intermediate input for produCtpital stock
is measured by two different methods for robustnéswing Yang (2015) and Brandt at al.
(2012) respectivelyWe see that upstrea firms have significantly larger capitatock
compared to their downstream counterparts and the effects are statistically signgingnt
different estimatorsThese resultare consistent with the ubiquitous anecdotal evidénae
polluting firms hawe o buy expensive equipment or abatement facilibesope with tighter
environmental regulation standards

In Panel Cof Table 8§ we further presentresults fornalie (reducedform) productivity
measures;alculatedo y di vi di n-gddddoy fabuarsotcapitasstoak.8imilarly, both
labor and capital productivity are higher in downstream firwigh the impact on capital
productivity being statistically significanT.hese results show that our baseline findings are
robust to the use of simpler ambre transparent productivity measuaesireflectarealloss
in firm productivity, rather than being mechanical to specific proceduréB®fconstruction.

In Panel Dof Table 8 we test the Porter HypothesiBhe outcome of interest frmso
investmens in research and developmerihe results show thatighter environmental
regulationincreasegirmsbinvestment irresearch and developmenthich is consistent with
the Porter Hypothesidut the result istatistically insignificantiue to large staradd errors

The results in Tabl& suggest hat the impacts ofenvironmentalregulation on TFP are

manifested througimultiple channels.The overall patterrtconfirms the predictions of our
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model:facing tighter environmental regulations, firms neeuhstall expensive facilitieg¢and

potentially also hire more labai) abate emissigheading to lower productivity.
B. Regulation and Emissions

The model in Appendix B also predicts that tighter environmental regulations will decrease
both emission leveland emission intensitgemission per unit of outputjn other words,
upstream polluting firmsre expecteaot onlyto reduce total emissions, but alsmadopt
cleaner technologie§his is consistent with the previous finding that upstream firms have
larger capital stockin this section,we formally examine the impacts of water quglit
monitoring on firmds emission and emission

Ideally, we would liketo investigate the emissiofisr the same set of firms covered in our
ASIF sample, so thate can directly link the reduction in emissions to the reduction in TFP.
However the ASIF sample does not include information on emissions. Instead, we use the ESR
data, which documesivarious types of pollutant emissions for all the major pollutingginm
each county.

We apply the same set of RD estimatiorfirm-level emission datéwhich is equivalent to
polluting-source level datajrom the ESR databas&Ve examinefour water pollution
outcomes: (1) total amount of COD emitted, (2) COD emissitengity (otal COD/total
output valug (3) total amount of wastewatatischarged, and (4) wastewater discharge
intensity (total wastewater/total outpralue).

Table 10 reports the local linear RD estimates for the four outcomes. Station fixed effects
are absorbed before estimation. Different RD estimateseg@rted including conventional
local linearRD estimates, biasorrected estimateand biascorrected estimates adjusted with
robust standard errors.

In Panel A, we can see that both COD emissimmdCOD emission intensity are higher for
downstream firms, anohost results aretatistically significantatthe 5% or 106 level. COD
emissions by polluters immediately upstreanfrom monitoring stationsare 0.750.99
logarithmic unitdower tharthose fomfirmsimmediatelydownstream. This implies that water
quality monitoringreducesCOD emission levels in upstream firms B8.8%i 62.8% (€%7>1
to €%°%1). For COD emission intensity, water quality monitornreguceshe COD emission
intensity in upgreamfirms by 38.®6i 49.3% (€°4%-1 to e2.1).
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In Panel B, weexaminewastewater discharg®ownstream firms tend to discharge more
wastewater but the results atatisticallyinsignificant due to large standard errdrge results
for wastewatedischarge intensity, however, are statisticalgnificantatthe5% or 106 level.

Combining both sets of results, vo®ncludethat upstream firmsemit less COD and
wastewateioverall and also produce fewelCOD emissions olesswastewater pevalue of
output (by adopting cleaner technologiespnfirming thetheoretical predictions.

Recall that the ESR database samples the most polluting firms in each county. Given that we
focus on a small region around each monitoring station, many of the upstream astiekwn
firms are located within the same county. This causes a potential selective attrition problem
because upstream firms facing tighter regulations tend to emit less and are thus less likely to
be sampled in the ESR database compared to downstreamlfisush selection exists, our
results in Table 10 will be underestimated, because the upstream firms that reduced the most
pollution are no longer included in the sample. Tiwidsen we evaluate the environmental
benefits of water monitoring, the estimata Tablel0 should be regarded as lower bounds.

While the emission results are consistent with our story, wea auknowledge that the
guality of the ESRlata @anbequestionableand thughe emission resul&hould be interpreted
with caution.For indance we find that there are large amounts of missing vednezeros in
the ESR dataand location, industry, firm, and year fixed effects combined can only explain a
smallpor ti on of fThesepadtérnsseemsuspiougonusandraisesusbaintial
concerns about the quality 6fh i neavdammental datdn fact, thiscan be the reason that
the governmentely on the readings of monitoring statiomstead othe ESR data collected
from polluting firms, to measure the effectiveness of pigltu control, althoughthe latter

would be more powerful artokttertargeted in a wrld without data manipulation.
C. Political Economy of Water Quality Monitoring

Our empiricalanalygs haveshown that upstream firms p r o d uredaiively affegtedi s
by water quality monitoringOur explanation is thatecausewater quality readings are
politically important, local officials have incentives to enforce tighter regulations on upstream
firms than on downstreafinms. In this section, weexplicitly explore such pditical-economic
incentivesbehind water quality monitoring

First, we documenthow upstream and downstream firms are treated differeoyl the
governmentln the ESR dataset, we find that upstream firms have substantially lower COD

emission anavastewater discharge. In the ASIF dataset, we also have information on the waste
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discharge fees paid by each firm in 2004. If the governmentisspos i f ai r 0 r ul e of
upstream and downstream firms for emissions sheuldexpect downstream firm® pay
morethan upstream firms, due to their higher emis¢gmels However, as shown in Panel A
of Table 10we find that upstream firms &gally paysignificantly morewaste discharge fees
to the government, despite thila¢y emit much les$n other words localgovernmets are able
to charge firms at differentiatezinission fee rategven thougtihesefirms arelocatedclose
to each other and areithin the same administrative jurisdictioithis doublestandard
phenomenons not unique in our studynd has been documented in some other settings as
well. For example, Liu (2017) investigates Chimtax reform and fingthat local governments
of China are able to collect adidinal informal taxes from certain firms for fiscal reven&an
et al. (2017pstudy Chinés valueadded tax (VAT) sstemand show that firms locatedrther
away from local taxagenciesexperience the largest increase in tax burden after VAT
enforcement costs are brought down by a new information techndloggl governments in
China have substantidiscretion in the managementtakation and various fees.

Secondweexaminethepolitical incentives of local officials.As documented in the Chinese
meritocracy literatureChina hasanimplicit rule thata prefecturelevel governorcannotbe
promoedto ahigher levelf his/herage reacks57 (for exampleWang, 2016; Xi et al., 2017)
This creates discontinuous drop in political incentives at the age ofTat6testwhetherthe
TFP effects of water quality monitoring can be expdal by political incentives, weigitize
the résumé of every prefectual party €cretary(the highestanked political leader in a
prefectural city between 2000rad 200 Wedef i ne a | eader as fdnhav
i ncent i/shasyaungethan 36én agiveny e ar , and Ahaving weak p
otherwise We thenassigramonitoringstationeitherto an fincentivizea or Aurrincentivizea
party secretaryn a given yeaand analyzéwo subsamplebased on whetheéhe monitoring
stationis under the governance af @incentivized leaderin a particular yeaiThe RD results
aresummarizd in PanelB of Table 9

We find that, vinen theprefecturalcity leader has strongolitical incentiveswater quality
monitoring has a statistically sigicant impact on upstream fir@$FP.The estimated impacts
rangefrom 0.57 to 0.66using different kernel functionsnd are nearly twice as large as the
baseline results in Table. 2n sharp contrastwhen the prefecture city leader has weak
promotionincentives, the TFP gap remaprecisely at zero all specificationsThese results
imply that the TFP discontinuity across the monitoring statiesigriven by the political

incentives of local oftials.
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Third, despitethe factthatstatecontrolled nonitoring stationsreestablishe@nd run bythe
central governmenit is still possible thakocal officialscanexert theiradministrativepowers
to influence the water qualitynonitoring Our concern is thatif local governmentscan
manipulate watequality readingsthey maybe lessncentivizedto regulate upstream firras
emissionsThese is evidendbatair pollution datdhas been manipulated at the margin in some
Chinese citievecause air quality is important for political evaluat{@hanem andhang,
2014)

To test this hypotésis we estimate the RD separately taro types of monitoring stations
automatic stations and manual statioAstomatic stations conduct alNater quality tests
automaticallyand report the data directly to the cehgavernment, while mnual stations
require technicians to condubetests manually® Becaust is difficult for local governments
to manipulate data froitihe automatic stations, we expect a larger §&p arouncutomatic
stations.

Panel Cof Table 9reporsthe findings:while we see an upstreatdownstream TFP gap for
both types of statiws, thiseffectis muchlargerfor automatic stationgalmost three times
larger) As thesample size shrinks substantialtyost RD estimates are statisticalgnificant

only atthe 10 percent level.
D. Enforcemenin Practice

The results irthe previoussubsectionsare instrumentatfor the understanshg of Chi na 6 s
environmentaftegulationsin particularwe show thasimilar firmsadjacent to each othean
live in dramatically diferent regulatory environmentieading to different firm behaviors and
diverging productivity.
To confirm these findingwith qualitative materialswe conductednultiple field trips and
interviewed dozens of firm managers and techngisaking in the monitoring station®ur
discussions reveal thaipt onlydo upstream firmsear larger burdens of emission feas
shownin our empirical analysethey also face a variety of command and control regulations
that cannot be easily qualied in our data For example, ironecity, we learedt hat f i r ms ¢
production could be abrupthgstricted or evesuspended bthe local governmenh order to

i mprove water guality readings. I n Chinads

15 Most stations were manual in the 1990s and early 2000s, but these weralgnaghlaced by automatic
stations, in order to improve the accuracy of water quality reporting. Weekly water quality reports from the
automatic stations are posted by the MEFht#://datacenter.mep.gaw/indexand reatime water quality
readings can be accessrthttp://online.watertest.com.cn/help.aspx
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envirommental inspectora/ere placed irthe pollutingfirms from time to time to ensure their
compliancewith environmentalstandards. These inspectansited upstreamfirms more
frequentlybecause they knew these firms had large impacts on water quality se&ds@ne
extreme casedf certain firms do not comply with the regulaticglectricity and natural gas
supply could even beut in order to meet the i tepviramental abatement target.

Regulatory documents from local governmertba similar storyUrgent ordersvereissued
when local governments realized water quality readings might fail to meet {egieér
government policy target A recent example of such an order, which attracted wide media
attention in China, is presented in Appendix C. His texample, Kunshan cityn Jiangsu
Provincerequired 270 manufacturing firms to suspend their produdticrder to improve
water quality Sluice gates along the rivers were closed thegoumping facilities were shut
down so that no wastewater coulddigcharged into the riveraven afteabatementreatment.
Special investigatonsere sent téhe plants to enforce the production suspension policy. While
some othese command and control policies cannot be quantitatwalyzedn our empirical
anaysis they do help explain why béBkoeffmtivesin wat er
reducing water pollutionanithss uch a si gni ficant I mpact on u|j

VI. Economic Significance
A. Economic Costs under Vario@€enarios

Our bagline model estimates that water quality monitoring ¢dessedan averagdossin
TFP of 0.31logarithmic unitsor pollutingfirms (as shownn Panel B of Table 2equivalent
to a 26.®%0 drop To translatethis TFP lossinto monetary valugone may askwhat would
happen ifall of Chinaenforcedregulabry standard as stringent athosefaced upstreanThe
total industrial output value (total revenyefrom the polluting firmswas about11 trillion
Chineseyuan (1,380 billion USD) in 2006.1° If all these firms were subject towater quality
monitoring regulationas stringent ashosefaced by the upstream firms in our empirical
setting the totalannualoss in output valuerould exceed.0 trillion Chineseyuan 602billion
US dollas) based or2006 industil output value”’

8 We use the 2006 exchange rate of 1:7.97.

”We compute the difference between the couatdufl output of 14,973.7 billion Chinese yuan (calculated
by 10975.7/(126.7%)) and the observed output of 10,975.7 billion Chinese yuan in the polluting industries in
2006. The calculations for other parts follow the same method.
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However,the regulationgaced byupstream firms may b®o stringent to apply tall the
other firms in the countryA more informativecounterfactuavould ke to determinehe TFP
lossand economic costssociated witl givenamountof emission abatemerfRecallthatall
the firms in the ESR database together cbate 85% ofChi na és t o and kllole mi s s
them ardocal largeemittersregardles of industry orrevenus.
Becauseave are unabléo matchthe ESR firms with ASIF fms,we cannodirectlylink the
TFP estimates withCOD estmates without imposingadditionalassumptioa The TFPand

COD effects of water monitoringze estimatedh previous tablesssentially aréhe following
G5) 4&02AO0AT OIRET | R441&0 4 & @ AOAT OIAET 1 ET 1

(6) #1 $ #/1$ O %#H/ $ #1 &/ $ O

where 4 & 0 L AOAT OIAET 1i€ thé average treatment effeof water quality
monitoringon TFP for firms with annual revenueser5 million yuan and# / $ s/ $
@is the average treatment eff@éétmonitoringon emittersthatproduceCOD pollutionmore
thana giventhresholdd 4 & Os the TFP fordownstreantfirms, and4 & (s the TFP for
upstreanfirms.

The average treatment effects on TFP and CCO# tihe entire distribution are:

(7) 4&0 O0OI2AA0AT OIAET 1BRD L AOAT OIAET T ET 1
0O0I2AAOAT OIAET 1RO L AOGAT OIAET 1 ET 1
8 #/$ OOI#N $ @M/ $ #/ $D 0O0I#N $ O M/ $ #/ $ @
where the probabilitiesould be written as the share of firms appearing in each sample:
0 OI2AA OAT GIAET 1 E+H+, 0 OT2PA OAT QIAET T Ed T—;
OOI#A $@ — 001I#N $ @ p —.

Whil e we cannotd&DixAk@Al GAED sbtEibmadS e RS D
in the data, weattemptto back them out by extrapolating tirgra-sample heterogeneous
treatment effects on TFP and COD.

In Table 11, weestimatehe heterogeneouseatmenteffects of water quality morating on

TFP with respect to firm8revenus, and the heterogeneotreatmenteffects of water quality
monitoring on COD emission intensity with respect to fibiasal CODemissionausing the
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polynomial RD approach The revenue heterogeneity is estimabgdising the polynomial
RD approach withan interaction term between the downstream dummy and&mexnsnue
(log). We use thespecification inColumn 1 of TableS4 as our preferregparametric
specification becausegenerates the closest RD estimatdbe nonparametric RD estimates
To allow for nonlinear heterogeneity, we also include quadratic and cabecactions in the
regressions. Based on the regression resultthevepredict the estimated impacts at different
levels of reenues andsummarze theresultsin Panel A.We find that the TFP effect is
substantiallylargerfor larger firms and nonexistentfor smaller firms. The effects of water
quality monitoring on TFP for themallest20% of firms (@mongall thefirms with an annual
revenueof above5 million Chineseyuan)becomenegligible The results are the same if we
use gadratic or cubic heterogeneitin Panel B, v conducta similar analgis for COD
emission intensity and cheakhetherthe effect of monitoring varies across differenfiyting
sources We find the same pattertarger emittes are strongly affected by water quality
monitoring while the treatment effect becomes essentially Zerothe smallest20% of
emitters inthe ESR samplelhese findingsagainconfirm thatthe i G spang the Large and
Letting Go steafegydisbussedSmsaction &/ B applied tahe context of water
guality regulations.

In addition,there is arfiexito variablein the ASIF databasgoaumenting whether a firns
excludedfrom the samplén the followingyear.A firm thatearns less than 5 millio@hinese
yuanin aparticularyear, based on theampling criteriais droppedirom ( €xitsd) the database
the next year This outcomeprovides additional information owhether water quality
monitaring affects firms at the margiim Appendix TableS7, wefind thatthe probability of
exiting the ASIF database is not affected by water quality tmang. This firding again shows
thatmonitoringdoes not affecsmallerfirms at the margin.

Given thes findings, if we assume that water quality monitordiogsnot increase the TFP
or emission levels of upstream firms, and that siee of thetreatment effecbn TFP or
emissios is a weltbehaved functiomvith respect to revenue emissiors, then wecan make
the following extrapolations:

9) 48&0 L AOAT OIRAET T & 1

18 |deally, we should atsapply the nofparametric RD estimates to different sgioups of firms and estimate
the heterogeneity separately for each-grdup. However, doing so significantly reduces the sample size of each
group and we would not have strong enough statisticatptmmake a reliable inference. In Appendix Table S6,
we divide the sample into only two groups and find results that are largely consistent with Table 11: the impacts
of water quality monitoring are primarily experienced by larger firms or emitters r@ndegligible for their
smaller counterparts.
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#1 $ #/ $ 0 1
Intuitively, asthe smallest produceedemitters in our ASIF oESR dataset already have
zero treatment effects, the even smaller produaacsemitters thoseexcluded from the
ASIF/ESR dataset)also should have zero treatment effecWe can therefore simplify
Equations7 and8 to the following:

(10) D YUY 3 2

S
The sample we uder estimationncludes 6,581 firms in polluting indwstiesfrom the ASIF

databas@nd9,888 pollutersfrom the ESR databaddsing this equation, weancalculate the
economic costs of water pollution abatement.

In Table12, we computethe economic coster variousscenariosFor easyreferencePanel
A reproduceshe keyresuls from Tables 2 and10, and Panel Balculateghe economic costs.
We focus onthe estimates inColumn 1 becausethey producemodestvaluesacrossal
specifications We first focus on COD emission®ater quality monitoringeducesCOD
emissions by @3 logarithmic unitsand decreases TFP by O.Rbarithmic units A 10%
change in total COD emissions casise2.49% change in TFP levels ithe pollutng
industries'® Using alternative specifications prodscglightly different resultswhich are
reportedin Columns 24. Similar interpretationscan also be applied to COD emission
intensity.In Column LLanupstream firmdés COD 65dilogasthmcn i nt e
units lower thanthat of a downstream firmThis meansa 10% changein COD emission
intensity causeadrop inTFP by about3.73%. Othercombinations create sligliariations as
summarized irColumns 24.

During Chinds 11th FiveYear Plan, total COD emissionsverereduced by 125% from
2006 to 201@qwith the targebeing10%).If we attribute the entire COD reductimom 2006
to 2010to the polluting indstries thenthis 12.45%abatemenin COD emissionsvould cause
a total output loss/orth 352 billion Chineseyuan(44.2billion USD) in the polluting indstries

basedon 2006 industrial output valug?® The annuareductionin COD emissionsbetween

19 The way we interpret this relationship is analogous to the Wald estimator in tis¢éayeosetting, except that
we do not have a readily available tool to combine the two stages from two different samgbesamoetrically
and we need to adjust for sample size. Water quality monitoring reduced COD emissions by 0.83 logarithmic
units and TFP by 0.31 logarithmic units, so a 10% change in COD emissions will lead to a
(6,581/9,888)*(0.31/0.83)*10% (= 2.49%) chanig TFP.

20We estimate that a 10% change in total COD emissions will cause a 2.49% change in TFP, which implies
that a 12.5% change in total COD emissions will cause a 3.11% change in TFP. We then compute the difference
between the counterfactual outmft11,328 (10,975.7/¢B.11%)) billion and the observed output of 10975.7
billion in 2006. The calculations for other parts follow the same method.
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2006 and2010 wagoughly 2.5% equivalent taan annualloss of69 billion Chineseyuan 8.7
billion US dollars)in gross industriabutput valugoeryearusing2006Chineseyuan

In 2015, the gross output valuef firms above designated sizen Chinaexceeed 110
trillion Chineseyuan, andaibout35% of output value (38 tillion Chineseyuan) is contributed
by the polluting indgtries.The central governmeaimsto reduceCOD emission®y another
10% during the 13" Five-Year Planfrom 2016 to 2020Applying ourestimates tahe 2015
datg we caninfer thatthe total output lossould be around990 billion Chineseyuan (159
billion US dollarg under currenmonitoring ancenforcemenpractices’* Other specifications
generate slightlgifferentestimates, ranging fro®@86to 1,099billion Chineseyuan(150.5to
176.7billion USD).

Note hat we makeawo strong assumptions in calculating teeonomiccosts. First, we
implicitly assume the marginal cost of abatement is linear so that the large and small emission
reductionshave proportionampacts orproductivity. Second, wassume that thestimates in
Table 10 are relialel andpotential data manipulatiowould not significantly changeour

estimates
B. PotentialSources of Bias

There are several reasonhly the estimatesn Table12 mayundersatethe true economic
costsofC h i n a 0 pollutioa toetrols

First, we use @onservativesstimateof the effectof monitoringon TFPin our calculations
In fact, as shown in Tabl& the TFP loss deito water quality monitoring haacreasedrom
0.31to 040since2003 If we use these tger TFP estimates, thassociate@conomic costs
will increase.

Secondalthough weprovideevidence that the smaller firms or emitters in our data are not
affected by water quality monitoring, the assumption that water quality monitoring does not
affect eve smaller(unobservelifirms or emittersat all may still be violated Shutting down
very smallpolluterscan be a feasiblpolicy for somelocal governmentgo enforcetighter
environmentaktandard. The TFP loss due &hutdowncannotbe captured in ouestimation.

Third, the distinction betweerpolluting and nonpolluting industries idased ortwo- to

threedigit industrial codesThis distinctiondoes notule out thepossibilitythatsomefirms in

21 We use the 2015 exchange rate of 1 USD to 6.22 Chinese yuan.
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the non-polluting industriesmay also emit pollutans and arethereforeregulatedby local
governmentslf this is the case, the estimated T&fd economitossareunderstated

Fourth someregionshave a highliensity ofmonitoring stationss well asnultiple tributaries
along themain streamsThesemonitoring stationsareexcluded from our sampleecauseve
cannofcrediblyidentify theupstream and downstreaownshipsIf there aranore monitoring
stations in more pollutecegions,some of the maspolluted regions anfirms ae excluded
from our sampe; if environmental regulationareevenmore aggressive enforcedin more
polluted regions,ite TFP lossn these regionsouldbeevenlarger.

Finally, we onlycomputethe directeconomic costsaused by TFP los®revious research
has shown thatghter environmentategulationcanalsocausainemploymentfirm relocation
andworker migration and canchange the flowof investment Theseindirect costs arenon
trivial and should beonsideredvhen calculating theveralleconomic costs of environmehta

regulations
VI1I. Conclusion

As theincome levelof the Chinese people risethe countrystartsto facea stark tradeoff
between preservingigh environmeral quality andsustainingrobusteconomic growthThis
paperis the first studyto credibly esimatetheimpactsof environmentategulationsChinese
manufacturindgirms and provides a timelgssessmemf the economic costs &@hinas water
pollution control policiesWe exploit aregression discontinuityesign based on the upstream
downstreanrelationship ofwater quality monitoring stations Chinaand find thattighter
water quality regulations lead to significant TFP loss for firms located epstrfrom
monitoring stationsThis is the case for firms polluting industriessucha discontinuty is
not observedor firms in nonrpolluting industries

We estimate thatvater quality monitoring reducesTFP levelsby 26.7%in firms located
immediatelyupstreamfrom monitoring stations This TFP loss $ driven mainly by private
Chinesdirms insteadf stateowned or foreign firmsA close examination of the TFP effect
by yearreveals thathe impacts of water quality controlsave been greatém more recent
yearsconsistent with the fachatenvironmentategulatiors in Chinahave tightenedverthe
past decade.

We also investigatethe impacs of water quality monitoring oemissiors. Using another
firm-level dataset, @ find that, at the extensive margumpstreamfirms emit substantially

(52.8%1 62.80) less COD andindustrial wastewaterthan downstreamfirms; and at the
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intensive marginypstream firms adopt cleartechnologyand emit lesgollution pervalue of
output (38. 7261 49.3%).

Combining both sets of estimatess calculateheeconomic costsf Chinas water pollution
control policies. We estimate that a 10% abatement in C&bissionsand COD emission
intensity can lead to a2.33461 2.7%% and 3.43%i 4.21% drop in a polluting firmé& TFP
respectivelyTheseestimates mp | y t hat irddédducmgaCOB emessionwofron 2016
to 20 would cause a total logs outputof 936 to 1099hillion Chineseyuan(150.5t0 176.7
billion US dollarg in the polluting indstries at least if current monitoring and enforcement
practices remain unchanged

Overall, our findingshighlight the negati® impacs of environmetal regulatios on
productivity. The estimateeéfficiency losss substantialsohigh environmenal qualitycomes
at higheconomicacost This isparticularlysalient for fasigrowing economies that rely heavily
on manufacturing

Pditical incentives arefundamentato understandin@hinad s irenmental regulatioriWe
show that lhe effect of environmental regulatiomlepends orocal officiald chances
promotionand | oc al g o0 vtemanipdaerenviboameptablataeSpeciically, the
TFP difference between upstream and downstream Eaosmeswice aslargewhenthecity
leader hasa greater probability opromotion andit approacks zero whenthe city leader
cannot be promotedhe effect of water quality monitoring orFP issubstantiallylarger for
stationsthatautomaticallytest andeportwater qualityto the central government

Our findings alsodemonstrate that environmental regulations haedéounddistributional
consequencedn the context of water quality moitoring, emisson controls in upstream
regionswill improve the water environment olownstream regiongJpstream firmsabate
emissiors andearn reducegrofits, ard jobscan bdostif polluting firms areshut dwn, while
downstream regions enjoy bdiigherenvironmendl qualityandmore rapiceconomic growth.
In the long runthese effectmayimply aspatialredistribution of economiactivity, population

and social welfare.

0]

Nevertheless, our findingso notanswer théoroaderquestion of whether ChidGas cur r ent

environmental regulatiostandardsre too aggressiva too lenientbecausave do not know

Chinese peopl willingnessto pay for cleaner surface watdfter all, little research has been

35



conducted on thesocioeconomiccosts of water pollibn in China??> To what extent
environmental regulations should designed and enforced, especiailgeveloping countries
that rely heavily on manufacturing industriesmains an underexplored research area.
We conclude bypointing out sane limitationsof this study anaffering directionsfor future
researchFirst, the estimates in this paper are derived partial equilibrium frameworkiVe
focus oma unique setting that affeaialy a small set of firmd.argescale regulatiowill affect
aggregateutput and inputarkes, andour estimateshouldbeinterpretedvith cautior when
used toevaluatelargescaleenvironmental policiesSecond, ar samplecovess a relatively
shortperiodof time, while firms might be able to bettexdjustinvestment angbroductionin
the long runWith the growing availability offirm-level longitudinaldata,investigating how
firms respond toregulationover long periods oftime will be an importantareafor future
researchRelatedlysorting and its subsequent welfarglicationsareimportantfor long-term
impact assessmenginally, with the expectationof increasingly tigher environmental
regulatonsin Ching entrepreneurand investorsnay choose taevelopbusinesssin nor
polluting industriesTighter enviromental regulations ithe polluting industries may create
externalitiesaffectingnonpolluting industries, anthereis alack of rigorous empirical studies

to quantifythe impactof such spillover effects on tleEonomy

2Two exceptions are that (1) Ebenstein (2012)

find:e

increase in deaths from digestive cancers; and (2) He and Perloff (2016) find that a deterioration in surface water

quality from Water Quality Grade Levkto Level Il is associated with higher infant mortality.
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Table 1. Covariate Bahnce Between Upstream Downstream Firms

Mean (within 10km) Mean Difference
Downstream  Upstream 010 O5 k m
1) (2) 3) (4)
Panel A. Timdnvariant Factors

Year ofOpening 1982.55 1984.16 1.92 -5.85
(76.06) (53.87) (2.99) (6.60)

SOE 0.24 0.27 0.02 0.00
(1=Yes, 0=0thers) (0.43) (0.44) (0.02) (0.08)
Foreign 0.16 0.19 -0.03 -0.07**
(1=Yes, 0=0thers) (0.37) (0.39) (0.02) (0.03)

Panel B. Pre2003 FirmLevel Characteristics

Value Added 8.42 8.48 0.07 0.13
(log) (1.24) (1.32) (0.06) (0.27)

Profit 1.19 2.13 0.95* 1.45
(billion yuan) (6.65) (11.75) (0.56) (2.28)

# of Employee 5.06 5.15 0.09 0.07
(log) (1.09) (1.15) (0.06) (0.10)
Capital Stock 1# 8.96 9.04 0.11 0.34
(log) (1.712) (1.83) (0.08) (0.22)
Capital Stock 2# 9.00 9.07 0.10 0.29
(log) (1.70) (1.83) (0.08) (0.23)
Intermedide Input 9.38 9.48 0.07 0.18
(log) (1.32) (1.38) (0.06) (0.25)

Tax 2.22 2.26 -0.08 0.21
(log) (2.18) (2.27) (0.10) (0.31)

Obs. 2,190 2,659 2,742 970

Notes:Data are collected from the ASIF data in 2000. Columiisréport the means a
standard deviations of firm characteristics. In columii, 3ve restrict our sample to 10
and 5km from water quality monitoring stations and test the covariate balance t
upstream and downstream firms. The difference coefficients are obtainednnygr@iS
regressions of firm chacteristics on an upstream dummy and water quality monitoring s
and industry fixed effects. Standard errors reported in the parentheses are clustered a
monitoring sation level. # Capital Stockrheasuresie value of fixed assets at the end of
and Capital Stock 2 measures the annual average value of fixed assets.
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Table 2. RD Estimates of the Impact of Water Quality Monitoring on TFP

Polluting Industries

Non-Polluting Industries

(1) 2) 3) 4) ) (6)
Panel A: Water Quality Monitoring and TFP
TFP (log)- Polluting Industries 0.36 0.38 0.43 -0.00 0.02 -0.05
(0.23) (0.24) (0.28) (0.14) (0.15) (0.14)
Bandwidth (km) 4.18 3.88 2.88 471 4.14 4.19
Panel B: Water Quality Monitoring and Residual TFP
TFP (log)- Polluting Industries 0.25* 0.25** 0.33** -0.01 0.00 0.02
(Station FE Absorbed) (0.14) (0.13) (0.15) (0.09) (0.10) (0.11)
Bandwidth (km) 5.80 5.98 4.82 6.02 5.48 4.26
Panel C: Water Quality Monitoring and Residual TFP
TFP (log)- Polluting Industries 0.31** 0.31** 0.35** 0.02 0.03 0.03
(Station and Industry FE Absorbed) (0.15) (0.15) (0.16) (0.08) (0.08) (0.09)
Bandwidth (km) 6.56 6.54 541 5.553 4,918 4.329
Obs. 6,582 6,582 6,582 12,422 12,422 12,422
Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes:Each cell in the table represents a separate regression. TFP is estimated using Olley and Pakestlid@9a he discontinuities
monitoring stations are estimated using local linear regressions anebptidial bandwidth proposed by Calonico et al. (2014) and Calc
(2017) for different kernel weighting methods. Standard errors clustered at thnngnstation level are reported below the estimate

significant at 10% ** significant at 5% *** significant at 1%.



Table 3. Heterogeneous Impacts of the Impact of Water Quality Monitoring on TFP

Residual TFR Polluting Residual TFH Non-Polluting
Industries Industries
) 2 3 4) ©) (6)
Panel A: By Ownership
Private Firms  0.34** 0.37** 0.31* 0.04 0.04 0.03
(0.17) (0.18) (0.18) (0.08) (0.08) (0.09)
Obs. 5,636 5,636 5,636 10,084 10,084 10,084
Band
W 5.965 5.590 5.087 6.052 6.059 5.537
SOEs -0.31 -0.16 0.23 -0.13 -0.10 -0.01
(0.52) (0.54) (0.50) (0.25) (0.25) (0.27)
Obs. 635 635 635 1,357 1,357 1,357
Band
W 4.282 4.474 4.407 4.724 4.545 3.955
Foreign Firms  -0.06 -0.07 -0.11 -0.12 -0.15 0.02
(0.27) (0.28) (0.31) (0.40) (0.42) (0.25)
Obs. 1,104 1,104 1,104 2,427 2,427 2,427
Band
wW 6.927 6.541 5.479 3.287 3.070 4.286
Panel B: By Size
Small Firm 0.16 0.16 0.14 -0.13 -0.12 -0.14
(Empl<50) (0.29) (0.24) (0.25) (0.15) (0.14) (0.13)
Obs 1,998 1,998 1,998 4,357 4,357 4,357
Band
wW 7.400 8.096 6.273 3.823 3.985 3.758
Large Firm 0.41**  0.42**  0.40** -0.01 0.01 0.04
(Empl O (0.14) (0.15) (0.17) (0.09) (0.10) (0.11)
Obs. 5,369 5,369 5,369 9,691 9,691 9,691
Band
wW 4.825 4.738 4.520 4.610 4.674 4.513
Panel C: By Firm Age
Old Firms 0.33* 0.39** 0.45** 0.05 0.05 0.04
(0.17) (0.19) (0.22) (0.09) (0.09) (0.09)
Obs. 4,481 4,481 4,481 8,373 8,373 8,373
Band
wW 6.695 5.881 4.624 5.432 5.199 4.526
Young Firms  0.48** 0.51** 0.39 -0.03 -0.00 0.07
(0.19) (0.22) (0.26) (0.16) (0.18) (0.20)
Obs. 1,438 1,438 1,438 2,627 2,627 2,627
Band
wW 3.768 3.537 3.798 5.768 5.084 4.357
Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes:Each cell in the table represents a separate regression. Monitoring station and
fixed effects are absorbed before estimating regressionndiisaity. In columns 13, we



report the estimated discontinuity for polluting industries, and in coluirBs¥e report the
estimated discontinuity for ngpolluting industries. Local linear regression and M
optimal bandwidth proposed by Calonico et(@014) and Calonico (2017) for differe
kernel weighting methods are used for the estimation. Conventional local linear reg
discontinuity standard errors clustered at the monitoring station level are reported be
estimates. * significant at0% ** significant at 5% *** significant at 1%.

43



Table 4. RD Estimates of the Impact of Water Quality Monitoring on TFP by Year

Residual TFR Polluting Residual TFH Non-Polluting
Industries Industries
€Y (2 3 (4) ) (6)
Panel A:Before and After 2003

Before 2003 0.09 0.10 0.11 0.01 0.01 0.06
(0.19) (0.20) (0.24) (0.12) (0.13) (0.15)
Obs. 2,570 2,570 2,570 4 565 4 565 4 565
After 2003 0.36** 0.35** 0.40** 0.03 0.04 0.07
(0.16) (0.16) (0.17) (0.08) (0.09) (0.10)

Obs. 5,916 5,916 5,916 10,992 10,992 10,992

Panel B. by Year

Year 2000 -0.18 -0.06 -0.15 -0.22 -0.21 -0.11
(0.26) (0.20) (0.28) (0.17) (0.18) (0.16)

Obs. 1,411 1,411 1,411 2,428 2,428 2,428
Year 2001 -0.02 -0.01 -0.04 -0.07 -0.05 -0.19
(0.21) (0.22) (0.24) (0.17) (0.18) (0.17)

Obs. 1,411 1,411 1,411 2,428 2,428 2,428
Year 2002 0.04 0.09 0.05 0.03 0.01 -0.02
(0.20) (0.20) (0.25) (0.13) (0.13) (0.12)

Obs. 2,106 2,106 2,106 3,644 3,644 3,644
Year 2003 0.30 0.34 0.37* 0.04 0.04 0.04
(0.29) (0.29) (0.212) (0.16) (0.16) (0.15)

Obs. 2,367 2,367 2,367 3,888 3,888 3,888
Year 2004 0.12 0.14 0.21 0.08 0.06 0.06
(0.30) (0.32) (0.31) (0.11) (0.112) (0.11)

Obs. 3,288 3,288 3,288 5,509 5,509 5,509
Year 2005 0.31 0.35 0.35 -0.04 -0.05 -0.06
(0.24) (0.25) (0.26) (0.15) (0.15) (0.15)

Obs. 3,750 3,750 3,750 6,296 6,296 6,296
Year 2006 0.48** 0.52** 0.61** 0.01 0.01 0.03
(0.22) (0.25) (0.27) (0.14) (0.15) (0.16)

Obs. 3,981 3,981 3,981 6,969 6,969 6,969
Year 2007 0.37* 0.38* 0.42* 0.14 0.15 0.17*
(0.19) (0.20) (0.22) (0.09) (0.09) (0.10)

Obs. 4,460 4,460 4,460 8,103 8,103 8,103

Kernel Triangle Epanech. Uniform Triangle Epanech. Uniform

Notes:Each cell in the table represents a separate regression. Mangtaiion and industr
fixed effects are absorbed before estimating regression discontinuity. In cole@ngel
report the estimated discontinuity for polluting industries, and in colurt)sw report the
estimated discontinuity for ngoolluting industies. Local linear regression and MS
optimal bandwidth proposed by Calonico et al. (2014) and Calonico (2017) for dif
kernel weighting methods are used for the estimation. Conventional local linear reg
discontinuity standard errors clustedhe monitoring station level are reported below
estimates. * significant at 10% ** significant at 5% *** significant at 1%.
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Table 5. Instrumental Variable Estimation using Hydrological Stations

Polluting Industries Noni Polluting Industries
Upstream TFP (log) Upstream TFP (log)
1) (2) 3) 4)
Upstream Hydrological Station 0.38** 0.30**
(0.18) (0.14)
Upstream Monitoring Station -0.35** -0.08
(0.15) (0.16)
Specification 1st Stage 2SLS 1st Stage 2SLS
Station FE Y Y Y Y
Industry FE Y Y Y Y
Observations 4,445 4,462 8,976 8,981
F Statistic 10.48 0.03 22.82 1.18
R-squared 0.47 0.21 0.45 0.11

Notes:Each column in the table represents a separate regression. We define "upstream monitoringssgéatianimy indicator for whether
firm is upstream from a monitoring station within a 10 km range, and similarly, we define "upstream hydrological statthmey indicatol
for whether a firm is upstream from a hydrological station within a 10 knmera@ur outcome of interest is fiflavel TFP estimated usin
Olley and Pakes (1996) method, our endogenous variable is "upstream monitoring station”, and our instrumental variatrkamn
hydrological station". We present firstage results and IVSLS results separately for firms in polluting industries (columns 1 and 2) and
in nonpolluting industries (columns 3 and 4). Monitoring station fixed effects are controlled for in all specifications. Staiodaateeclustere
at the monitoringtaition level. * significant at 10% ** significant at 5% *** significant at 1%.



Table 6. RD Estimates using Placebo Downstream Firms

Polluting Industries

Non-Polluting Industries

1) 2) 3) (4) (5) (6)
Panel A: Water Qualy Monitoring and TFP
TFP (log)- Polluting Industries 0.36 0.44* 0.26 -0.18 -0.20 -0.13
(0.23) (0.26) (0.29) (0.16) (0.15) (0.18)
Panel B: Water Quality Monitoring and Residual TFP
TFP (log)- Polluting Industries 0.48** 0.52** 0.61%+* 0.13 0.11 0.14
(Station and Industry FE Absorbed) (0.20) (0.21) (0.23) (0.13) (0.11) (0.12)
Obs. 4,435 4,435 4,435 8,001 8,001 8,001
Kernel Triangle Epanech.  Uniform Triangle Epanech.  Uniform

Notes:Each cellin the table represents a separate regression, where each control firm is replaced by its best match in the whole sa
pre-2003 nearest neighbour matching (based on TFP, industry, and other basic characteristics). TFP is estimated usirgakéde\ E9b
method. The discontinuities at monitoring stations are estimated using local linear regression apdiM&bandwidth proposed by Caloni
et al. (2014) and Calonico (2017) for different kernel weighting methods. Standard errors clugtezaedanitoring station level are report
below the coefficients in column$ 3 and conventional local linear regression discontinuity standard errors clustered at the monitorin
level are reported in columns8 * significant at 10% ** signifiant at 5% *** significant at 1%.



Table 7. Robustness Checks: Impact of Water Quality Monitoring on TFP

TFPT1 Polluting Industries
(1) 2) 3)

Panel A. Alternative Ways to Estimate RD and Standard Errors

Bias-corrected RD Estimates 0.35** 0.34**  0.38*
(0.15) (0.15) (0.16)
Bias-corrected Robust Estimates 0.35* 0.34~ 0.38**

(0.19) (0.19) (0.19)

Panel B. Alternative Ways to Choose Optimal Bandwidth

Bandwidth Chosen by MSEwo Selector 0.30**  0.29* 0.25
(0.15) (0.15) (0.17)
Bandwidth Chosen by MSEum Selector 0.31** 0.30**  0.34**
(0.15) (0.15) (0.16)
Bandwidth Chosen by CER Selector 0.38** 0.40* 0.43*
(0.19) (0.19) (0.20)
Bandwidth Chosen by CERwo Selector 0.35** 0.39**  0.48**
(0.17) (0.17) (0.20)
Bandwidth Chosen by CERum Selector 0.37** 0.39**  0.44**

(0.18) (0.19)  (0.20)

Panel C. Placebo Tests

Move Monitoring Stations Upstream by 5km 0.12 0.13 0.11
(0.16) (0.16) (0.16)
Move Monitoring Stations Upstream by 10km -0.08 -0.09 -0.08
(0.11) (0.11) (0.12)
Move Monitoring Stations Downstream by 5km 0.13 0.15 0.11
(0.09) (0.09) (0.11)
Move Monitoring Stations Downstream by 10km 0.03 0.05 0.07
(0.16) (0.15) (0.17)
Kernel Triangle Epanech. Uniform

Notes:Eachcell in the table represents a separate regression. Monitoring station and indust
effects are absorbed before estimating regression discontinuity. Conventional local linear re
discontinuity standard errors clustered at the monitoring stkgti@| are reported below the estima
(except Panel A). Local linear regression and M$Emal bandwidth selected by Calonico et
(2014) and Calonico (2017) for different kernel weighting methods are used for the esti
(except Panel B). Monitorg station and industry fixed effects are absorbed before estinr
regression discontinuity. * significant at 10% ** significant at 5% *** significant at 1%.



Table 8. Channels: RD Estimates on other Measures

Conventional BiasCorrected RD  Bias-Corrected
Local RD Robust

1) (2) 3 (4) () (6)

Panel A. Output Related

ValueAdded 004 002 -005 -0.07 -005 -0.07
(log) (0.22) (0.23) (0.22) (0.23) (0.28)  (0.29)
Profit 4.47  4.36 548  5.36 5.48 5.36

(10 million yuar) (4.07) (3.88) (4.07) (3.88) (5.58) (5.37)

Panel B. Input Related

Employees -0.16 -0.14 -0.22 -0.19 -0.22 -0.19
(log) (0.16) (0.16) (0.16) (0.16) (0.21) (0.21)

Intermediate Input -0.18 -0.16 -0.28 -0.26 -0.28 -0.26
(log) (0.25) (0.27) (0.25) (0.27)  (0.33) (0.33)

Capital Stock 1 # -0.49* -0.46 -0.62** -0.60** -0.62* -0.60
(log) (0.29) (0.29) (0.29) (0.29) (0.37) (0.37)

Capital Stock 2 # -0.55* -0.52* -0.70* -0.66** -0.70* -0.66*
(log) (0.30) (0.30) (0.30) (0.30) (0.38) (0.38

Panel C. Nare Labor and Capital Productivit

VA/Employee 0.17 0.24 0.18 0.27 0.18 0.27
(log) (0.19) (0.21) (0.19) (0.21) (0.24) (0.26)

VA/Capital Stock 1 0.26** 0.27*** 0.26** 0.29%** 0.26** 0.29**
(log) (0.10) (0.11)  (0.10) (0.11)  (0.13) (0.13)

VA/Capital Stock 2 0.22** 0.24** 0.22** 0.26** 0.22 0.26*
(log) (0.11) (0.11) (0.11) (0.11)  (0.14) (0.14)

Panel D. Porter Hypothesis

R&D -0.06 -0.17 -0.16 -0.28 -0.16 -0.28

(log) (0.39) (0.46) (0.39) (0.46) (0.58) (0.62)
Triangl Epanech Triangl Epanech Triangl Epanech
Kernel e : e : e

Notes:Each cell in the table represents a separate regression. Monitoring station and
fixed effects are absorbed before estimating regression discontinuity. We us0@®
cdlapsed data to estimate the regression discontinuities. Local linear regression an
optimal bandwidth proposed by Calnoico et al. (2014) and Calonico (2017) for dif
kernel weighting methods are used for the estimation. Station and industreflieets are
controlled in all regressions. Standard errors are clustered at the monitoring statio
and reported below the estimates. # Capital Stock 1 is measured by the value of fixe
at the end of each year and Capital Stock 2 is theahraverage value of fixed assets
significant at 10% ** significant at 5% *** significant at 1%.
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Table 9. Political Economy of Water Quality Monitoring

Conventional Local RD Bias-Corrected RD Bias-Corrected Robust
) 2) 3 4) ©) (6)
Panel A. "Double Standard"
Waste Discharge Fee -1.15%* -1.07** -1.40 %% -1.32** -1.41%* -1.32%*
(log) (0.51) (0.53) (0.51) (0.53) (0.57) (0.60)
Panel B. Strong vs. Weak Politidacentives
TFP (log)- Strong Inentive 0.57*** 0.59%** 0.63*** 0.66*** 0.63*** 0.66***
(0.19) (0.20) (0.19) (0.20) (0.22) (0.23)
TFP (log)- Weak Incentive 0.01 0.08 0.00 0.07 0.00 0.07
(0.23) (0.24) (0.23) (0.24) (0.29) (0.312)
Panel C. Automatic vs. Manual Monitoringa8ons
TFP (log)- Automatic Stations 0.92 1.01* 1.11* 1.22** 1.11 1.22*
(0.59) (0.57) (0.59) (0.57) (0.74) (0.72)
TFP (log)- Manual Stations 0.26* 0.26* 0.27* 0.27* 0.27 0.27
(0.15) (0.15) (0.15) (0.15) (0.18) (0.18)
Kernel Triangle Epanech. Triangle Epanech. Triangle Epanech.

Notes:Each cell in the table represents a separate regression. Monitoring station and industry fixed effects are absorbé¢ichbtioy
regression discontinuity. We focus on polluting firms and use 233 collapsed data to estimate the regression discontinuities. Local
regression and MShBptimal bandwidth proposed by Calnoico et al. (2014) and Calonico (2017) for different kernel weighting methods
for the estimation. Panel A examines htax and waste discharge fee collected by the government differ between upstream and dov
firms. Panel B estimates the discontinuities separately using the subsamples where the Prefecture Party Secretarynioad$enredstesng
promotion incenties(age<=56 vs. age >=56). Panel C estimates the discontinuities separately for automatic and manual monitoring
significant at 10% ** significant at 5% *** significant at 1%.



Table 10. RD Estimates of the Impact of Water Quality Monitoringon Emissions

Conventional Local RD Bias-Corrected Bias-Corrected Robust
1) (2) 3) (4) (5) (6)
Panel A: COD Emission
COD Emission (log) 0.83* 0.75* 0.99** 0.92** 0.99** 0.92*
(0.44) (0.42) (0.44) (0.42) (0.49) (0.47)
COD Emission Intensity (log) 0.55** 0.49* 0.68** 0.62** 0.68** 0.62**
(0.27) (0.26) (0.27) (0.26) (0.32) (0.312)
Panel B: Wastewater Discharge
Waste Water Discharge (log) 0.39 0.39 0.49 0.50 0.49 0.50
(0.33) (0.35) (0.33) (0.35) (0.40) (0.42)
Waste Water Discharge Intensity (log) 0.34* 0.33* 0.42** 0.41** 0.42* 0.41*
(0.20) (0.20) (0.20) (0.20) (0.23) (0.22)
Bandwidth Selector MSE MSE MSE MSE MSE MSE
Obs. 0,888 9,888 9,888 9,888 9,888 9,888
Kernel Triangle  Epanech. Triangle Epanech. Triangle Epanech.

Notes: Each cell in the table represents a separate regression. Monitoring station fixed effects are absorbed before estewsitmy
discontinuity. Local linear regression and M8gtimal bandwidth selected by Calomiet al. (2014) and Calonico (2017) for different ker
weighting methods are used for the estimation. Conventional local linear regression discontinuity standard errors tcthsteneditoring
station level are reported below the estimates. * sigamiti at 10% ** significant at 5% *** significant at 1%.
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Table 11. Predicted Effects of Water Quality Monitoring on TFP and COD
Model 1 Model 2 Model 3

€3] 2 3
Panel A. TFP Effects for Large and Small Firms (Measured by Industry Ovsihu)
20% (log Rev ~ 9.01) 0.14 0.10 0.11
(0.24) (0.23) (0.23)
40% (log Rev ~ 9.58) 0.27 0.32 0.32
(0.23) (0.22) -0.22
60% (log Rev ~ 10.16) 0.42* 0.50** 0.49**
(0.22) (0.21) 0.21
80% (log Rev ~ 10.92) 0.62*** 0.66*** 0.65***
(0.22) (0.20) (0.20)
Panel B. COD Effect for Large and Small emitters (Measured by COD Emissions)
20% (log COD ~ 5.97) 0.14 0.12 0.19
0.44 (0.43) (0.44)
40% (log COD ~ 7.46) 0.93** 0.96** 0.99**
(0.43) (0.43) (0.44)
60% (log COD ~ 8.70) 1.59%** 1.62%** 1.59%**
(0.43) (0.43) (0.43)
80% (log COD ~ 10.18) 2.38%** 2.34%** 2.27***
(0.43) (0.43) (0.42)
Heterogeneity Specification Linear Quadratic Cubic

Notes:This table reports the predicted effects of water quality monitoring on TFP aldd
emission intensity. Monitoring station and industry fixed effects are absorbed |
estimating regression discontinuity. In Panel A, we explore the TFP heterogen
different revenue levels, and in Panel B, we explore the COD intensity heterggsr
different COD emission levels. We use parametric RD to estimate the heterogeneou:
using different heterogeneity functional forms. We choose the polynomial RD specific
that generate the closest estimates to thepaoametric estimatesperted in Table 2 ani
Table 8 as the baselines. We then include interactions to test the heterogeneity. '
means that we use a linear interaction between the downstream dummy and log rev
log COD), and "quadratic" means we interact the dowast dummy with a quadrat
function of log revenue (or log COD). Panel A shows that the monitoring effect is

significant for large firms, and Panel B shows that the monitoring effect is only signi
for large emitters.



Table 12. Economic Cost of COD Abatement

Conventional Bias-Corrected

1) (2) 3 (4)

Panel A. Estimated Effect of Water Quality Monitoring

Effect on log TFP 0.31** 0.31** 0.35** 0.34**
(0.15) (0.15) (0.15) (0.15)
Effect on log COD Emission 0.83* 0.75* 0.99** 0.92**
(0.44) (0.42) (0.44) (0.42)
Effect on log COD Emission Intensity 0.55** 0.49* 0.68** 0.62**

(0.27)  (0.26)  (0.27)  (0.26)

Panel B. Estimated Economic Costs Estimates:

TFP Loss if all Polluting Firms are Monitored 26.66% 26.66% 29.53% 28.82%
TFP Loss per 10% COD Emission Abatement 2.49% 2.75% 2.35% 2.46%
TFP Loss per 10% COD Emission Intensity Reduction 3.75% 4.21% 3.43% 3.65%
Total Output Loss if all Polluting Firms are Monitored (billion CNY) 3988.9 3988.9 4599.6 4444.6

Total Output Loss in the Polluting Industry during the 11th Mear Plan (billion CNY), A 351.98 390.86 332.60 348.16
Total Output Loss in the Polluting Industry per 2.5% COD Abatement (billion CNY), A 68.64 76.01 64.95 67.91
Total Qutput Loss in the Polluting Industry per 10% COD Abatement (billion CNY), A 279.79  310.48 264.48 276.77
Total Output Loss in the Polluting Industry per 2.5% COD Abatement (billion CNY), B 24291  269.00 229.85 240.34
Total Output Loss in the Pollutinigdustry per 10% COD Abatement (billion CNY), B 990.2 1098.8 936.0 979.5

Kernel Triangle Epanech. Triangle Epanech.
Gross Output Value in the Polluting Industry in 2006 (billion CNY), A 10975.7
Gross Output Value in the Polluting Industry in 201#i¢m CNY), B 38844.9

Notes:The gross output values were obtained from the website of the National Bureau of Statistics. A: calculation is basenitpugvadse
(of industries above designated size) in 2006; B: calculation is based on grosyvalugp(of industries above designated size) in 2015.
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Online Appendi X
EnvironReeguladt FolPmamdicti vity in China:

Regression Disocontinuity Desi

Appendix A. Estimation of TFP using Olley-Pakes Method

Our Olley-Pakes TFRneasures constructed based on Brandt et al. (2QEM)g the Annual Survey
of Industrial Firms (ASIF) dataset from 2000 to 20@7 made slight changes to the estimations of
somekey parameters to improviie accuracy of productivity measureménthe ASIF dataseias

suggested byang (2015)We explain in detail how we construct these key parameters.

Gross Output

Following the literature, we use produiant valug instead of sales, ake gross output measure.
Productionvalueand sales diffeslightly due to the change in inventori@e formelis moreclosely
related to input and productivitgndthus more relevant for TFP estimation.

When constructing output defbrs, we follow Yang (2015) by using output price indexes for every
2digtindustry in each year from the AUrban Price
of StatisticsBecausehose price indexes are linked across different years, we can use them to deflate

yearly nominal output to real output in 2000.

Value Added

When constructing real value added, we subtract from the aforementioned real output the goods
purchased for resale, indirect taxes, and material inputs.

We construct input deflators from National Inffdtitput tables in 1997, 2002, and 2007, to take into
acount the dynamics of input price in different sectors, as suggested by Yang (2015). By doing so,

we are able to deflate nominal inputs in each sector in each year to the real values in 2000.

Employment and Wages
The ASIF dataset contains infortizan on the number of employeesd the compensation for labor,
including wages, employee supplementary benefits, and insurance. We follow Brandt et al. (2012) to

sum up wages, benefits, and insurance@®xy for total labor compensation.



Capital Stock and Investment

In the ASIF dataset, firms report the value of their fixed capital stock at original purchase prices, as
well as capital stock at original purchased prices less accumulated depreBetamnse¢hese values
are the sum of nominal values in all thast years, they cannot be taken directly to proxy for real
capital stock. To back out the real capital stock and construct real investment from this variable, we
follow the approach suggested by Yang (2015).

For each year after the first period, fistt ake t he di fference between
Acapital stock i n the.itaccoawng to thes prepicslyi calailateéd pricé e n
indexes for this period. For observations in the first period of the panel, we assunietndbe
f 1 r est@bdishment until this first period, itdhan averagehe same increasing trend in investment
rate as the-2ligit sector average value, which can be collected from the yearbooks published by the
National Bureau of Statistics. Under this assuamttogether with the nominal capital stock in the
first period, nominal capital stock when established, and relevant deflators, we are able recover the

real investment and real capital stock in the first period as well.

TFP Estimation

With the key variales constructed, we follow the literature and use the Olley and Pakes (1996)
approach to estimate TFPhis approacladdresses both simultaneity and selection probteaisare
salient in the traditional Solowesidual type TFP estimatdsor implementatn, we use the Stata

package provided by Yasar et al. (2QQ8¢ase refer to their manual for the details of the estimation.



Appendix B. Conceptual Framework

We providea conceptual framework thiaglps toexplainthe empirical findingswe focuo n f i r ms
production decisions and address how environmental regulations can affect their TFP. We assume that
firms produce homogeneous goodadth a Hicksneutral continuously diérentiable production
functiond O , wherel represents capitdh, representtabor, andd 0 P B 1

When a firm produces outplt, emissions are generated as apbyduct and are an increasing
function of outpu® . The firm can reduce its emissis by employing extra (ngproductive) labob
and/or capitald . The final emissionlevel is therefore a continuously differentiable function
OO0 A .Weassumeth® O ®pP O nwWpP O mnadO ©O
U

We model the government ds e rfing),o o mme rfti aln@rse ggun
A firm maximizes itgrofit by settingd fOfY D as follows
(1) JH%Q" na O 120 O Vo0 O 000 W
wherer) represents the market output priceepresents theapital priceor interest rateando
represents wages

The first order conditions f oeatheteforee f i r méds pr

2) — Nnd i 00D m
3) — Ad 0 oI =
(4) — i 00 1
(5) — 0 00 m

Applying theimplicit function theoremye canprove the following:

(6) — mh— m— mh— m
7) 4 m
®) j i j



Proposition 1.An increase in the emissions tax reduces TFP.

Proof. By definition4 & 0 2 5 ; and we therefore have the following:
> 1 -0 > -9 >
(11) no 5 5 T

wherethe inequality follows from Equation (8).

Proposition 2 An increase in the emission tareduces the emissidevelOand emission intensity

h A
Proof. Taking the derivative of emissions with respect to the emission tax, we have:
9) — 03— 03— 03— T

where the inequalitjollows from Equations (6) and (7).

For emission intensity, we have:

(10) T 22 5

wherethe inequality follows from Equation (7).

In this model, we implicitly assume that production has no effect enntarket price. This
assumption is likely to hold in our empirical setting becausefomas on a small set of firms
concentrated in a small geographical at@athe one handhese firms face the same marketause
they are locatedloseto each other;mthe other handis there are many other firms and buyers in the
market, localwater qualityregulationscannot affectthe output market price This is important
becausave cannot directly measure output quaniitin our firm-level production datadnstead, we
can only measure revenfj&d 0 R . Becausdirms are pricetakersin our setting we can translate
the effects of environmental regulation @venuebasedT FP toreal utputbased) TFPIn the case
where prices depend on marginal cost, we will underestimate the true TFP effect béeasee

increases as marginal cost of production increases.



Appendix C1. An Order Issued by Kunshan Governmentto Improve Water Quality around
the Monitoring Stations (Scan Copy)
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