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Abstract 

This paper estimates the effect of environmental regulation on firm productivity 

using a regression discontinuity design implicit in Chinaôs water quality 

monitoring system. Because water quality readings are important for political 

evaluations, and the monitoring stations only capture emissions from their 

upstream regions, local governments are incentivized to enforce tighter 

environmental regulations on firms immediately upstream of a monitoring 

station, rather than those immediately downstream. Exploiting this discontinuity 

in regulation stringency with novel firm-level geocoded emission and production 

datasets, we find that upstream polluting firms face a 27% reduction in Total 

Factor Productivity (TFP), and a 48% reduction in emissions, as compared to 

their downstream counterparts. We find that the discontinuity in TFP does not 

exist in non-polluting industries, only emerged after the government explicitly 

linked political promotion to water quality readings, and was entirely driven by 

prefecture cities with incentivized mayors. A back of the envelope calculation 

indicates that Chinaôs water-pollution abatement target (2016-2020) would lead 

to roughly one trillion  Chinese Yuan loss in industrial output value.  

Keywords: total factor productivity; water quality monitoring; water pollution; 

environmental regulation; political promotion 
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I. Introduction 

The question of whether environmental regulation hinders economic efficiency has long 

been important and controversial. Today, especially in many rapidly-growing economies, this 

debate attracts much attention and entails significant policy ramifications. On the one hand, 

neoclassical models suggest that environmental regulations will increase production costs, lead 

to a reallocation of labor and capital, and perhaps reduce the competitiveness of an economy. 

On the other hand, environmentalists and other proponents of environmental protection argue 

that stringent regulations provide incentives for polluters to develop cleaner and less costly 

technologies to reduce pollution, which can in turn be beneficial to productivity. Notably, 

Porter (1991) argues that, if one country adopts more stringent environmental standards than a 

competitor, firms in this country will invest more in clean innovations, which in turn will 

enhance the countryôs growth.1 

In this study, we estimate the causal effect of environmental regulation on firm productivity 

using a novel spatial regression discontinuity design. We exploit Chinaôs surface water quality 

monitoring system and investigate how tighter water emission controls affect the total factor 

productivity (TFP) of Chinese manufacturing firms. We argue that, because water quality 

monitors can only pick up pollution information from upstream regions, and because the 

readings from the monitors are important for political evaluations, local governments have 

strong incentives to require upstream firms to abate emissions. As a result, within a small 

neighborhood around a water quality monitoring station, upstream firms face tighter 

environmental regulations than downstream firms. By focusing on a narrow geographic band 

that only stretches from a few townships upstream and downstream of each surface water 

monitoring station, we are able to isolate the impacts of water quality controls on industrial 

firmsô productivity from potential confounding factors. Our analysis shows that upstream firms 

in polluting industries have significantly lower TFP as compared to downstream firms. 

The identification relies on the assumption that upstream and downstream firms should be 

ex ante identical in the absence of any pollution controls. This assumption is likely to hold 

because the locations of surface water quality monitoring stations were mainly determined by 

hydrological factors (such as water flow and river width) rather than socio-economic factors. 

Notably, the Chinese government requires water quality monitoring stations to be established 

close to existing hydrological stations so that they can share certain facilities and combine 

                                                 

1 Evidence in favor of Porterôs hypothesis is summarized in a recent review by Ambec et al. (2013). 
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water quality and hydrological data. Because the hydrological stations were established to 

monitor hydrological conditions rather than industrial conditions, and most of them were 

established between the 1950s and 1970s, when China had relatively little industrial pollution, 

the location choices of hydrological monitoring stations should be orthogonal to firmsô 

economic and environmental performance today.  

In addition to the qualitative arguments, we document three empirical patterns in the data to 

support the validity of our research design. First, we find that only firms in polluting industries 

are affected by water quality monitoring, while firms in non-polluting industries are unaffected. 

Second, we analyze the data by year and show that the spatial discontinuity in firmsô TFP in 

the polluting industries only became evident after 2003, when the new political regime of 

President Hu Jintao started to emphasize achieving a balance between economic growth and 

sustainability. Relatedly, we also show that firm characteristics and township socio-economic 

conditions were well balanced between the upstream and the downstream before regulations 

became tight. Third, exploiting the fact that many monitoring stations are intentionally located 

adjacent to hydrological stations, we use whether a firm is upstream of a hydrological station 

as an instrumental variable for whether a firm is upstream of a monitoring station, and find 

quantitatively similar results. 

Our findings contribute to the ongoing debate on the economic costs of environmental 

regulations in several important ways. First, although the topic is of tremendous policy 

relevance in developing countries, most studies to date have focused on developed countries 

(e.g., Jaffe et al., 1995; Henderson 1996; Becker and Henderson, 2000; Berman and Bui, 2001; 

Greenstone, 2002; Walker, 2011; Greenstone, List, and Syverson, 2012; Ryan, 2012; Kahn and 

Mansur, 2013; Walker, 2013). In this study, we investigate China, the largest developing 

country, manufacturer and emitter in the world, and highlight the potentially significant 

economic costs of environmental regulation in the context of a rapidly-growing manufacturing 

economy. Moreover, most of the existing literature on environmental regulation focuses on air 

pollutions, and the few exceptions that do look at water regulation mainly only investigate the 

environmental consequences of water regulation (Greenstone and Hanna, 2014; Keiser and 

Shapiro, 2018), leaving a gap in knowledge regarding the economic costs of water regulation, 

which our paper intends to fill in. 

Second, our analyses on the political economy of water quality monitoring shed light on how 

environmental regulations are implemented in reality, which in the Chinese context has largely 

been a black box to academia and the public. We find that upstream firms pay more emission 
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fees and taxes than do downstream firms, even though they actually produce lower levels of 

outputs and emissions. This implies that local governments use a double standard in 

environmental regulations. Consistent with our explanations to the discontinuity, we also find 

that political promotion incentives drive the baseline effect: when a city leader has a higher 

probability of promotion and thus stronger political incentives, the impact of water quality 

monitoring on TFP can be twice as large. Additionally, around monitoring stations whose data 

are less susceptible to local political influence, i.e., stations that automatically send data to the 

central government rather than relying on technicians, local politicians have to implement more 

stringent regulations to improve the water quality readings, resulting larger TFP difference 

between upstream and downstream firms. These findings add to the growing literature on the 

political economy of pollution (List and Sturm, 2006; Burgess et al., 2012; Kahn et al., 2015; 

Lipscomb and Mobarak, 2017; Jia 2017) and suggests potential manipulation in Chinaôs 

environmental data (Ghanem and Zhang, 2014).  

Finally, understanding firmsô abatement costs and responses to regulation is critical for 

optimal policy design. Using another firm-level geocoded dataset that records polluting firmsô 

environmental performance, we further estimate the impacts of water quality monitoring on 

water pollution emissions. We find that both chemical oxygen demand (COD) emissions and 

COD emission intensity (emissions per unit of output) are higher in downstream regions, 

suggesting that the total reduction in emissions comes not only from the upstream reduction in 

output but also from the upstream adoption of cleaner technologies. Combining the TFP 

estimates with the COD estimates, we calculate the economic costs of tightening water 

pollution regulations. We estimate that a 10% reduction in COD emissions leads to a 2.49% 

decrease in TFP, and that Chinaôs target of reducing total COD emissions by 10% between 

2016 and 2020 would cause a total loss in industrial output value of 990 billion Chinese yuan 

(159 billion US dollars) under current policy design and enforcement practices. In addition to 

the large overall economic costs associated with emission reduction, using detailed firm-level 

data also allows us to explore the channels through which firms are affected, and helps us 

understand how different types of firms respond to regulations. For instance, we show that 

upstream firms have to make substantially more investments in machineries (capital) to cope 

with tighter regulation. Heterogeneous analyses reveal that the TFP loss is almost exclusively 

experienced by private Chinese firms, so tightening environmental regulations in the future is 

likely to damage the competitiveness of private Chinese firms rather than state-owned or 

foreign firms. Tests on sorting suggest that to avoid the large impact of regulation on 
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productivity, upstream firms tend to relocate, but this can only happen in the long run. 

Combined together, these results imply a redistribution of production, income, environmental 

quality and social welfare between upstream and downstream regions. This study therefore also 

speaks to several lines of literature on the impacts of environmental regulation on production 

(Becker and Henderson, 2000), employment (Greenstone, 2002; Walker, 2011), plant location 

choice (List et al., 2003), income and total welfare (Ryan, 2012), and foreign direct investment 

(FDI) (Fredriksson, List and Millimet, 2003; Hanna, 2010; Cai et al., 2016).  

The rest of this paper is structured as follows. Section II describes the institutional 

background, research design and empirical strategy. Section III  describes the data and presents 

descriptive statistics. Section IV presents the estimation results and discusses the findings. 

Section V examines the channels, explores the political economy of environmental regulation, 

and tests whether emission measures also differ across the monitoring stations. Section VI 

interprets the results and benchmarks their economic significance. Section VII  concludes the 

paper. 

 

II. Research Design and Empirical Setup 

A. Water Quality Monitoring and Water Pollution Controls in China 

As the worldôs largest developing country, China faces a variety of pressing environmental 

challenges, including prevalent water and air pollution. According to the World Bank (2007), 

roughly 70 percent of Chinaôs rivers were polluted and contained water deemed unsafe for 

human consumption (at the time of that report). Poor surface water quality has driven 

policymakers to propose regulations to protect water bodies and reverse the process of 

degradation. A national water quality monitoring system was established in the 1990s to 

monitor surface water quality in major river segments, lakes and reservoirs. 

Initially known as the Bureau of Environmental Protection, the Ministry of Environmental 

Protection (MEP) established the ñNational Environmental Quality Monitoring Network-

Surface Water Monitoring Systemò (NEQMN-SWMS) in 1993. At the beginning, the 

monitoring system was intended mainly for scientific rather than regulatory purposes, and most 

of the station-level monitoring data were kept confidential by the government. No strict 

emission abatement targets were set by the Chinese government between 1990s to early 2000s 

because economic growth was considered the countryôs priority. As a result, along with 
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Chinaôs rapid economic growth, the country witnessed severe degradation of its ecological 

systems.  

In 2002, Hu Jintao became the new political leader of China, taking power from Jiang Zemin, 

and held office until  2012. Given the countryôs mounting environmental challenges, the new 

president started to emphasize the importance of seeking a balance between economic growth 

and environmental sustainability. Notably, in 2003, President Hu proposed the ñScientific 

Outlook of Developmentò (SOD),2 which sought integrated sets of solutions to economic, 

environmental and social problems, opening an era of environmental regulation.  

Responding to the SOD slogan, the MEP increased its efforts to resolve the issue of water 

pollution. In 2003, the MEP issued an updated version of NEQMN-SWMS and spread the 

ñTechnical Specification Requirements for Monitoring of Surface Water and Wastewaterò to 

local governments. The new policy documents led to an expansion of the national surface water 

quality monitoring system, with the total number of state-controlled stations increasing from 

419 to 574 between 2003 and 2010.3 The water quality data also became available for the public 

and were published in various environmental yearbooks starting from 2003.  

During President Huôs political regime, the importance of clean surface water was 

emphasized and the central government adopted a target-based abatement system to control 

environmental pollutants. In particular, during the 11th Five-Year Plan (2006ï2010), the 

emission abatement targets included (but are not limited to): (1) reducing COD emissions by 

10% (from 141.4 million tons in 2005 to 127.3 million tons in 2010), (2) reducing the 

percentage of monitored water sections failing to meet Grade V National Surface Water 

Quality Standards from 26.1% in 2005 to 22% by 2010, and (3) increasing the ratio of 

monitored water sections (of  the seven main bodies of water in China) meeting Grade III 

National Surface Water Quality Standards from under 41% in 2005 to 43% by 2010.4 With 

these targets, the central government then allocated binding abatement requirements to each 

province, and provincial governors were required to sign individual responsibility contracts 

with the central government, documenting their emission abatement plans in detail. Provincial 

governors then assigned abatement mandates to prefectures and counties and used local 

                                                 

2 SOD can be translated as the ñScientific Development Conceptò or the ñScientific Development Perspective.ò 
3 The most recent expansion of the system, under the administration of President Xi Jinping, further increased 

the number of state-controlled monitoring stations to 972 (with 766 for major rivers, and 206 for lakes and 

reservoirs) in 2015.  
4 Source: http://www.mep.gov.cn/gzfw_13107/zcfg/fg/gwyfbdgfxwj/201605/t20160522_343144.shtml  

http://www.mep.gov.cn/gzfw_13107/zcfg/fg/gwyfbdgfxwj/201605/t20160522_343144.shtml
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environmental performance along with other criteria to assess and promote local government 

officials. Water pollution control thus became a political task for local governments.  

Because rivers flow from higher to lower elevation, water quality monitoring stations can 

only capture emissions from their upstream areas, but not from downstream areas. Under the 

new political regime, local officials would have strong incentives to enforce tighter 

environmental regulations in upstream regions than in downstream regions. We exploit this 

spatial discontinuity and estimate the causal impact of tighter water pollution regulation on 

productivity. Because the Chinese government did not enforce stringent industrial pollution 

controls until 2003, we expect that, if water quality monitoring indeed influences firm 

productivity, this effect should be weaker or non-existent before 2003, and become stronger 

afterward.  

B. Location Choice of Water Quality Monitoring Stations 

The purpose of establishing a water quality monitoring network is to achieve a 

comprehensive understanding of the countryôs surface water quality. The monitoring system 

covers the countryôs major rivers, lakes, and reservoirs. A monitoring station should be set in 

a way that can is spatially representative to its neighborhood water bodies and can properly 

reflect changes in water pollutants over time. Consequently, the locations of the monitoring 

stations were chosen based mainly on hydrological considerations. 

According to the MEP, the monitoring stations must be placed in rivers with steady flows, 

wide water surfaces, and stable river beds, and must avoid stagnant water areas, backwater 

areas, sewage outfalls, rapids and shallow water. The MEP also requires that monitoring 

stations be established to serve ñlong-termò purposes, ensuring that short-term needs (such as 

avoiding or targeting pollution from a specific region or a specific firm) cannot be 

accommodated.  

Additionally, an important feature of station placement is that the MEP requires monitoring 

stations to be built close to hydrological stations, which enables the government to combine 

hydrological parameters with water quality information. Most hydrological stations were built 

in the 1950s-1970s and are used to collect meteorological and hydrological data. 

In this paper, we focus on the state-controlled surface water quality monitoring stations. 

State-controlled stations are established and supervised by the MEP and the State Council of 

China. The water quality readings from the state-controlled stations are reported directly to the 

MEP to ensure data quality. Yearly average water quality readings from the stations are 
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reported in the environmental yearbooks and the central government used these data to assess 

the environmental performance of local governments.  

Aside from state-controlled stations, there are also local water quality monitoring stations 

and special stations designed to monitor the emissions of major polluters. The special 

monitoring stations are placed immediately downstream from the polluter to monitor its 

environmental performance. We do not have data for these types of stations.  

C. Research Design and Econometric Model  

We exploit the spatial discontinuity in regulation stringency around water monitoring 

stations to estimate the causal effect of regulation on TFP. The distance between a firm and a 

monitoring station serves as the running variable. We examine whether firms located 

immediately upstream from the monitoring station have lower productivity than adjacent 

downstream firms. This empirical strategy is similar in spirit to recent works that also exploits 

the flow of pollution along rivers for identification (Kaiser and Shapiro, 2017; Lipscomb and 

Mobarak, 2017), but is novel in that it utilizes a unique spatial discontinuity setting around the 

monitoring stations. 

The identifying assumption of our research design is that, due to spatial adjacency, firms 

located immediately upstream and downstream of monitoring stations should be balanced ex 

ante along various dimensions but will  differ from each other only because upstream firms 

become more tightly regulated.  

The discontinuity can be estimated by both parametric and non-parametric approaches. 

Gelman and Imbens (2017) show that the parametric RD approach, which uses a polynomial 

function of the running variable as a control in the regression, tends to generate RD estimates 

that are sensitive to the order of the polynomial and have some other undesirable statistical 

properties. As a result, estimators based on local linear regression or other smooth functions 

are often preferred, because they can assign larger weights to observations that are closer to the 

threshold and therefore can produce more accurate estimates. We thus focus on a local linear 

approach, which can be estimated by the following equation:  

(1)  ὝὊὖ Ὀέύὲ ὈὭίὸὈέύὲὈὭίὸό ὺ ‐                

  ίȢὸȢ  Ὤ ὈὭίὸὬ 
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where TFPijk is the total factor productivity of firm i in industry j around monitoring station k. 

Ὀέύὲ is an indicator variable that equals 1 if firm i (in industry j) is downstream from 

monitoring station k, and 0 otherwise. ὈὭίὸ measures the distance between firm i and 

monitoring station k, and h is the bandwidth length (i.e., the acceptable distance from the 

discontinuity for sample inclusion).  

To account for industry and location-specific TFP determinants in the non-parametric 

estimations, we control for industry and monitoring station fixed effects ό and ὺ. The model 

essentially compares upstream and downstream firms in the same industry around the same 

monitoring station. The estimation of this non-parametric RD model with fixed effects is 

implemented using the two-step approach suggested by Lee and Lemieux (2010), where 

industry and station fixed effects are absorbed by running an OLS regression of TFP on a set 

of industry and station-specific dummies, and then apply the non-parametric estimations on the 

residual TFP obtained from OLS estimation.5 

The choice of the optimal bandwidth h involves balancing the conflicting goals of focusing 

comparisons near the monitoring stations, where the identification assumption is most likely 

to be satisfied, and providing a large enough sample for reliable estimation. In this study, we 

rely on an MSE-optimal bandwidth h proposed by Calonico, Cattaneo, and Titiunik (2014) and 

Calonico, Cattaneo, Farrell (forthcoming), and experiment with various kernel weighting 

functions to ensure robustness.  

The standard error is clustered at the monitoring station level to deal with the potential spatial 

correlation of the error term, as suggested by Cameron and Miller (2015). We also try two-way 

clustering at both the industry and the monitoring station levels and get quantitatively similar 

standard errors. 

As a way to check the robustness, we also estimate a parametric RD model: 

(2)         ὝὊὖ Ὀέύὲ ὪὈὭίὸ ὈέύὲὪὈὭίὸ ό ὺ ‐  

where TFPij k is the total factor productivity of firm i in industry j around monitoring station k. 

ὪὈὭίὸ is a polynomial in distance between firm i in industry j and monitoring station k. 

The polynomial function is interacted with the treatment dummy to allow flexible functional 

form on both sides of the cutoff, and ό and ὺ are industry and station fixed effects. 

                                                 

5 Lee and Lemieux (2010) argue that, if there is no violation of the RD assumption that unobservables are 

similar on both sides of the cutoff, using a residualized outcome variable is desirable because it improves the 

precision of estimates without violating the identification assumption. 
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III . Data and Summary Statistics 

A. Data 

Our analysis is based on several datasets that together provide comprehensive information 

on the socio-economic conditions of townships, the production and performance of industrial 

firms, and emissions from heavy polluters centered around the monitoring stations. 

Water Quality Monitoring Stations  

We collect data from water quality monitoring stations from surface water quality reports in 

various environmental yearbooks from 2003-2010, which include the China Environmental 

Yearbooks, China Environmental Statistical Yearbooks, and China Environmental Quality 

Statistical Yearbooks. Data available in more than two different sources are cross-validated. 

The number of state-controlled monitoring stations varied slightly between years in these 

reports, ranging from 400 to 500 stations. We geocoded all the water quality monitoring 

stations. 

Annual Survey of Industrial Firms Database 

Our firm-level TFP is calculated using data from the Annual Survey of Industrial Firms 

(ASIF) from 2000 to 2007. The ASIF data include all the private industrial enterprises with 

annual sales exceeding 5 million Chinese yuan and all the state-owned industrial enterprises 

(SOEs). The data are collected and maintained by the National Bureau of Statistics (NBS) and 

contain a rich set of information obtained from the accounting books of these firms, such as 

inputs, outputs, sales, taxes, and profits.  

The detailed production information allows us to construct TFP measures for each firm in 

each year. There are several approaches to estimating firm-level TFP and each requires 

different assumptions (Van Biesebroeck, 2007). In this paper, we use the consistent semi-

parametric estimator suggested by Olley and Pakes (1996). The Olley-Pakes method addresses 

the simultaneity and selection biases in estimating TFP and has been the most widely-used 

method for the investigation of Chinese firmsô productivity in the literature (see for example, 

Brandt et al., 2012; Yang, 2015). Using Olley-Pakes TFP estimator ensures that our estimates 

can be compared with previous ones. The details of estimating TFP using the Olley-Pakes 

method are discussed in Appendix A. For robustness checks, we also construct alternative TFP 
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measures based on other estimators, such as the Ackerberg et al. (2015) approach and the naïve 

labor/capital productivity measures.    

The ASIF data were used in several previous studies. A well-known issue is that the data 

contain outliers. We follow standard procedures documented in the literature to clean the data.6 

We first drop observations with missing key financial indicators or with negative values for 

value added, employment, and fixed capital stock. We then drop observations that apparently 

violate accounting principles: liquid assets, fixed assets, or net fixed assets larger than total 

assets; or current depreciation larger than cumulative depreciation. Finally, we trim the data by 

dropping observations with values of key variables outside the range of the 0.5th to 99.5th 

percentile.  

The ASIF data have detailed address information for sampled firms in each year. We geocode 

the location of the 952,376 firms that appeared in the sample and then compute precise distance 

measures between each firm and its closest water quality monitoring station. 

Because our research design is fundamentally cross-sectional, despite having data for 

multiple years, in the baseline analysis, we collapse the multi-year data into a cross-section and 

apply the RD estimators to it. The interpretation of the coefficients is therefore an average 

effect that persists for years. To fully utilize the dynamic structure, however, we also apply 

non-parametric RD estimators to different years and examine how the discontinuity changes 

over time.  

Environmental Survey and Reporting Database 

To investigate whether water quality monitoring indeed reduces water-related emissions, we 

collect firm-level emission data from Chinaôs Environmental Survey and Reporting (ESR) 

database, which is managed by the MEP.  

The ESR database is the most comprehensive environmental dataset in China that provides 

firm-level (polluting-source level) emissions for various pollutants. The ESR database 

monitors polluting activities of all major polluting sources, including heavily polluting 

industrial firms, hospitals, residential pollution discharging units, hazardous waste treatment 

plants and urban sewage treatment plants. In this study, we keep only the ESR firms that are in 

the same polluting industries as the ASIF firms.  

                                                 

6 More details about the construction and cleaning processes of the ASIF data can be found in Hsieh and Klenow 

(2009), Songet et al. (2011), Yu (2015), and Huang et al. (forthcoming). 
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The sampling criteria in the ESR database is based on the cumulative distribution of 

emissions in each county. Polluting sources are ranked based on their emission levels of 

different ñcriteria pollutants,ò and those jointly contributing to the top 85% of total emissions 

in a county are included in the database. In this study, we use ESR data between 2000 and 

2007, the same period as the ASIF database.  

During our sample period, the ñcriteria pollutantsò changed over time. In 2000, only chemical 

oxygen demand (COD) emissions and sulfur dioxide (SO2) were ñcriteria pollutants.ò Polluting 

sources included in the database were therefore chosen based on their contributions to COD 

emissions or SO2 emissions. In 2007, ammonia nitrogen (NH3) and NOx also became ñcriteria 

pollutants.ò  

Among all the pollutants, COD is most relevant to this study. COD is a widely-used water 

quality indicator that measures the amount of oxygen required to oxidize soluble and 

particulate organic matter in water.7 It assesses the effect of discharged wastewater on the water 

environment. Higher COD levels mean a greater amount of oxidizable organic material in the 

sample, which reduces dissolved oxygen levels. A reduction in dissolved oxygen can lead to 

anaerobic conditions, which are deleterious to higher aquatic life forms.  

We focus on COD emissions because COD is the first water-related ñcriteriaò pollutant used 

by the MEP, and the government explicitly set a 10% abatement target for COD emissions in 

the 11th Five-Year Plan. We also corroborate the findings on COD emissions by looking at the 

amount of wastewater discharge. 

Like the ASIF, this dataset also includes detailed address information. We therefore geocode 

all the ESR firms and compute their distances to the nearest monitoring sites. The dataset 

allows us to construct total emission levels and emission intensity measures (emission levels 

divided by total output value) for large polluters in each county.  

Township-level Socio-economic Data 

The National Bureau of Statistics (NBS) conducts the ñTownship Conditions Survey (TCS)ò 

on an annual basis. It is a longitudinal survey that collects township-level socio-economic data 

for all the townships in China. We have access to the TCS data for 20 provinces in 2002 and 

use the township-level data to assess similarities between upstream and downstream townships.  

Geo-data 

                                                 

7 For example, COD abatement is used by the central government of China as a key performance indicator to 

assess local government efforts in environmental protection. In the 10th and 11th Five-Year Plans (2001-2005 

and 2006-2010), COD was used as a primary criterion (along with ammonia-nitrogen) to set national abatement 

targets and conduct performance appraisals. 
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We obtained township-level GIS boundary data in 2010 from the Michigan China Data 

Center. We use GIS data of Chinaôs water basin system from the Ministry of Water Resources. 

We use GIS elevation data to identify upstream and downstream relationships. These GIS 

datasets are then matched to our geocoded township and firm datasets.  

B. Data Matching 

The data we have compiled are, to our knowledge, the most comprehensive and 

disaggregated collection ever assembled on water pollution and firm-level economic and 

environmental performance in China. The matching process involves several steps and is 

illustrated in Figure 1.  

When constructing the dataset for analysis, we first have a layer of the water basin system 

overlaid on the township GIS map. Then, using each monitoring station as a center, we draw a 

circle with 10 km radius, locate all the geocoded firms (from the ASIF dataset and the ESR 

dataset) on the map, and identify all the firms that fall in a 10-km circle. After that, we calculate 

each firmôs distance to its nearest monitoring station. In some regions (mostly in the eastern 

coastal areas), the distribution of monitoring stations can be very dense and multiple tributaries 

or branch rivers merge into the trunk streams. As a result, some 10-km circles overlap with 

each other, making it difficult to identify upstream and downstream relationships (i.e., an 

adjacent upstream firm for one monitoring station can be in the adjacent downstream of another 

monitoring station). We therefore exclude these water monitoring stations from our dataset. In 

some less-developed regions (mainly in the Western areas), the distribution of large industrial 

firms is too sparse and some 10-km circles around monitoring stations contain no firms from 

the ASIF or ESR datasets. We also drop all such monitoring stations from our sample. About 

a quarter of the monitoring stations are located on lakes or reservoirs, and we drop them as 

well. After these exclusions, we are able to use 161 water quality monitoring stations. The 

distribution of our sampled monitoring stations is represented in Figure 2.  

For each firm kept in the sample, we project its location onto the nearest river basin, and 

extract the elevation of that projected point. Then, we compare this elevation to the elevation 

of the adjacent monitoring station, so that we could decide for each firm whether it is in the 

upstream or downstream of its adjacent monitoring station.8 In the end, we are able to assemble 

                                                 

8 Since township is typically the lowest level of policy implementation, we also look at firms in the same 

townships but fall outside of the 10-km circles. We keep these firms in the baseline 10 km sample and also show 

that our results are robust to using much smaller bands (5 km). 
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a geocoded data set that includes township-level socio-economic conditions, firm-level 

production and performance, and firm-level emissions. Our sample includes 19,150 unique 

ASIF firms and 9,888 ESR firms from 544 townships, centered by 161 water quality 

monitoring stations.  

We attempted to match firms in the ASIF database with firms in the ESR database. However, 

because these two datasets use very different sampling criteria and are managed by different 

government agencies, we were able to match only 10% of ASIF firms with ESR firms. The 

matched sample is too small for us to draw any credible statistical inferences. As a result, in 

subsequent analysis, we analyze these two datasets separately.  

C. Balance Checks 

The underlying assumption for our RD design is that, except for environmental regulation, 

other determinants of TFP change smoothly around the monitoring stations. At the firm level, 

environmental regulations may affect many production decisions, making it difficult to test this 

assumption using firm-level data, which primarily contain time-varying variables. The only 

two (arguably) time-invariant covariates in the ASIF data, i.e. ñfirm establishment dateò and 

ñfirm ownership typeò, are indeed smoothly distributed around monitoring stations, as shown 

in Table 1 Panel A, 

As discussed in Section II Part A, surface water regulation was not strictly enforced until 

President Hu Jintao came into power in 2003, thus water monitoring stations should not affect 

upstream firms in the early years of our data. 9  We thus compare upstream firms with 

downstream firms using Year 2000 data (the first year of our sample) and test the differences 

in value added, profit, employment, capital, intermediate input and tax. As can be seen from 

Panel B in Table 1, the vast majority of these covariates are smoothly distributed across 

monitoring stations. These results are consistent with the assumption that upstream and 

downstream firms are identical along many dimensions. 

In addition to the balance tests using firm-level data, we also conduct balance tests using 

township level data, which include a rich set of variables that are important for firm production, 

to provide additional evidence that upstream and downstream regions are comparable in 

aspects other than water regulation. The results are summarized in Appendix Table S2. In Panel 

A of Table S2, we see that basic township characteristics are balanced, including township 

                                                 

9 The dynamic analysis of the RD results will be discussed in the Section V Results.. 
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area, arable area, distance to county center, whether the township is an old-region town, 

whether it is an ethnic minority town, the number of residents, and the number of administrative 

villages.10 In Panel B, we test whether basic infrastructure measures are similar between 

upstream and downstream townships. Again, the length of roads, number of villages with road 

access, number of villages with electricity access, and number of villages with tap water access 

are similar between upstream and downstream. Finally, production requires labor. We examine 

whether human capital differs significantly between upstream and downstream townships. In 

the township data, we have two relevant variables: the number of primary schools and the 

number of students enrolled in primary schools. Again, we find no evidence that upstream 

townships differ from downstream townships in this regard.  

The results in Table 1 and Appendix Table S2 are encouraging, as they indicate that upstream 

and downstream firms are well-balanced for both time-invariant characteristics and pre-2003 

covariates, and these firms are located in townships that are highly comparable. While it is, of 

course, impossible to completely rule out the presence of unobserved factors discontinuously 

change across the monitoring stations, these balance checks lend additional credibility to our 

research design.  

 

IV. Results 

A. Effects of Water Quality Monitoring on TFP 

We begin the analysis by graphically presenting our main findings. Applying the Olley-Pakes 

method, we estimate the log TFP for each sampled firm. Figure 3 plots log TFP (or residual 

log TFP) against distance to a monitoring station. Each dot represents the average log TFP for 

firms within a bin of distance; their 95% confidence intervals are also presented. A fitted 

function is then overlaid on the graph to illustrate the discontinuity at the monitoring stations.  

We divide the firms in ASIF into polluting industries and non-polluting industries based on 

the definition of polluting industries used by the MEP.11 In Panel A, we present the RD plot 

for log TFP in the polluting industries. In Panel B, we show the RD plot for residual log TFP 

in the polluting industries. The difference is that monitoring station and industry fixed effects 

                                                 

10 An old region refers to a Communist Partyôs revolutionary base region. An administrative village is organized 

by one village committee and may include several natural villages.  
11 Details of the polluting and the non-polluting industries are summarized in Appendix Table S1. 
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are absorbed in the residual log TFP panel. In both panels, we see a sharp change in TFP at 

precisely the locations where the water quality controls take effect. The TFP of upstream firms 

is significantly lower than that of downstream firms in polluting industries. In contrast, in 

Panels C and D, we do not observe similar discontinuities in TFP in non-polluting industries.  

Table 2 quantifies the graphical findings in Figure 3. Panel A presents the RD estimates 

without any controls, for both polluting and non-polluting industries. We see that polluting 

firms located immediately downstream from monitoring stations have higher TFP, but there is 

no TFP difference for the non-polluting firms. The estimates are not statistically significant 

because of large standard errors.  

Our sample covers 161 water quality monitoring stations in 34 manufacturing industries. A 

simple RD regression, as reported in Panel A, would compare upstream and downstream firms 

from different clusters (monitoring stations) and industries, creating noise in the statistical 

inference. To address this issue, we control for station fixed effects in Panel B, and control for 

both station and industry fixed effects in Panel C. By doing so, we effectively compare the TFP 

differences station by station and industry by industry and then average the differences across 

stations and industries. As we control for the fixed effects, the RD coefficients get more 

precisely estimated, and thus become statistically significant. 

In our preferred specifications, which account for both station and industry fixed effects, the 

estimated gap in log TFP between upstream and downstream firms ranges from 0.31 to 0.35 

for the polluting industries. These estimates imply that the water quality monitoring has 

reduced upstream firmsô TFP levels by 26.7% (e-0.31-1) to 29.5% (e-0.35-1).  

Comparing the RD estimates in Panels B and C to Panel A, we see that the magnitudes of 

the estimated impacts are remarkably close. This is important because it suggests that station- 

and industry-specific determinants of TFP levels, while being important determinants of firmsô 

TFP, are uncorrelated with the treatment status. However, including them can significantly 

reduce the estimated standard errors of the treatment effects.  

The estimates for the non-polluting industries are close to zero and none of them are 

statistically significant. For both sets of results, the RD estimates are robust to different choices 

of kernel functions. 
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B. TFP Effects by Firm Ownership, Size, and Firm Age 

In Table 3, we explore whether the effect of water quality monitoring on TFP varies by 

ownership, firm size and firm age. In light of the findings reported in Table 2, we focus on 

residual TFP with station and industry fixed effects absorbed.  

In Panel A, we estimate the RD by firm ownership type and find that the baseline TFP loss 

is driven mainly by private Chinese firms. Water quality monitoring has no significant impact 

on the TFP of state-owned enterprises (SOEs) and foreign firms. This result may reflect the 

fact that environmental regulations are not binding for SOEs or foreign firms as a practical 

matter; they generally have greater bargaining power over local governments and thus face less 

stringent enforcement. Another possible explanation is that SOEs and foreign firms generally 

have superior ex-ante environmental performance compared to private Chinese firms and 

therefore are not affected by tighter regulations. However, given the relatively small number 

of observations for SOEs and foreign firms in our sample, these sub-sample null results should 

be interpreted with caution. 

In Panel B, we investigate the impact heterogeneity by firm size. In China, the government 

adopts a policy strategy called ñGrasping the Large and Letting Go of the Smallò (ñZhua Da 

Fang Xiaoò). ñGrasping the largeò means that policymakers mainly target large enterprises, 

while ñletting go of the smallò means that the government exerts less control over smaller 

enterprises. The phenomenon has been widely documented in the context of economic reforms 

and policy implementation (see, for example, Hsieh and Song, 2015). In environmental 

regulation, many policies are also designed in such a way that larger firms need to meet larger 

abatement targets.12 We investigate if this phenomenon is true in our setting. We define small 

fi rms as having less than 50 employees and the rest are categorized as large firms. The results 

in Panel B show that the TFP impacts are statistically significant only for larger firms. In other 

words, the ñGrasping the Large and Letting Go of the Smallò strategy seems to be applied to 

the context of water quality regulations, too.  

In Panel C, we compare the TFP loss by firm age. We are interested in whether old firms and 

young firms respond differently to water quality monitoring. We define new firms as firms 

born in or after 2003, when Chinaôs environmental regulations became stringent. We then 

estimate the discontinuities separately for old and young firms using post-2003 data. We find 

                                                 

12 See, for example, ñThe Top 10,000 Energy-Consuming Enterprise Program,ò which requires only large firms 

to abate carbon emissions: http://www.ndrc.gov.cn/zcfb/zcfbtz/201112/t20111229_453569.html 

http://www.ndrc.gov.cn/zcfb/zcfbtz/201112/t20111229_453569.html
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that the TFP loss caused by water quality monitoring is statistically significant for both old and 

young firms. This finding is inconsistent with the ñgrandfatheringò phenomenon, in which new 

environmental policies are often designed or implemented in such a way that older firms can 

be exempted from tighter regulations, because the cost of retrofitting existing facilities is higher 

than that of building new sources with cleaner technology. In the context of Chinaôs water 

quality monitoring, both young and old upstream firms have been under tighter regulation than 

downstream firms since 2003. In addition, the magnitude of treatment effects for young firms 

established after the regulation became stringent in 2003 is comparable to that of old firms, 

suggesting that the selective locational choices of young firms are not driving the baseline 

findings. 

C. Results by Year 

The stringency of water quality regulations has changed substantially during our sample 

period. Specifically, in 2003, President Hu Jintao proposed the ñScientific Outlook of 

Developmentò initiative to address the pressing environmental challenges in China.  In the 

same year, the MEP upgraded the surface water quality monitoring system.  

In addition, starting in 2006, COD abatement became a key indicator in evaluating local 

environmental performance, which were explicitly linked to political promotions.  

We thus hypothesize that the TFP effect of water monitoring should be intensified after 2003 

and 2006, respectively. In Figure 4, we provide RD estimates separately for each year. We find 

that the TFP differences between upstream and downstream firms exactly match the policy 

changes we have discussed. Specifically, the estimate is close to zero from 2000 to 2002, and 

becomes larger in 2003, the year President Hu took office. The effect becomes statistically 

significant starting in 2006, the first year of the 11th Five Year Plan. The corresponding results 

are summarized in Table 4.   

The finding that the monitoring effect was close to zero and statistically insignificant prior 

to 2003 is consistent with the balance tests presented in Table 1, and further justifies our 

identifying assumption: in the absence of tighter water quality regulations, upstream and 

downstream firms around the same water quality monitoring station have similar levels of 

productivity. 

The dynamic pattern of the RD coefficients is also re-assuring in terms of ruling out 

alternative explanations: to the extent that one thinks the baseline results are driven by 

confounding factors, such factors have to be specific not only to upstream vs. downstream 
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firms, polluting vs. non-polluting industries, but also specific to the timing of two independent 

political events happened in China in 2003 and 2006, respectively.  

D. IV Results Using Hydrological Stations 

Our qualitative discussions on the rules of setting up monitoring stations, the balance tests 

of firm-level and township level variables, the finding that the discontinuity is only evident for 

polluting industries, and the result that the discontinuity only emerges after 2003, all suggest 

that the identifying assumption in our RD design is likely to hold.   

Nevertheless, one may still be concerned about the endogenous location of monitoring 

stations. For instance, a politically connected polluting firm has strong incentives to lobby the 

local government, so that the monitoring station would be established upstream of that firm. If 

these connected firms also receive other forms of benefits from the government that could 

affect their productivity, such as subsidies or loans, our RD estimates would be biased. 

In this section, we use an instrumental variable (IV) approach to directly address this concern. 

We exploit the fact that, when monitoring stations were set up, local governments typically 

attempted to locate them closer to existing hydrological stations, so that data, equipment and 

technicians could be shared in order to achieve economies of scale in water monitoring.  

A hydrological station collects hydrological data such as water levels, flow velocity, flow 

direction, waves, sediment concentration, water temperature, and ice conditions, as well as data 

on meteorological conditions such as precipitation, evaporation, air temperature, humidity, air 

pressure and wind. Because hydrological stations were set up between the 1950s and 1970s (a 

period when China barely had any industrial pollutions at all), and because their locations were 

chosen based purely on hydrological considerations, these locations should be orthogonal to 

the future socio-economic conditions of their neighborhoods. All the hydrological stations were 

built and supervised by the Ministry of Water Resources (MWR), instead of the Ministry of 

Environmental Protection (MEP), and play no roles in collecting any measures of water 

pollution. 

Therefore, one would expect that, except for inducing the establishment of monitoring 

stations, the existence of a hydrological station alone should have minimal impact on the 

production and emission behaviors of adjacent firms. Utilizing this ñexclusion restriction,ò we 

adopt ñwhether a firm is in the near upstream area of a hydrological stationò as an instrumental 

variable (IV)  for ñwhether a firm is in the near upstream area of a monitoring stationò and 

estimate a 2SLS to quantify the impacts of water quality monitoring on TFP.  
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Empirically, we estimate the following first-stage regression: 

(3) ὟὴὓέὲὭ ϽὟὴὌώὨὶέ ‗ ʎ   

where ὟὴὓέὲὭ is a dummy variable indicating whether firm Ὥ in industry j is in the near 

upstream area (10 km) of monitoring station k; ὟὴὌώὨὶέ  is a dummy variable indicating 

whether firm Ὥ in industry j is in the near upstream area (10 km) of a hydro-station k; ‗ and ʎ 

represent industry and monitoring site fixed effects; and   is the error term. We then estimate 

the second stage regression: 

(4) ὝὊὖ ϽὟὴὓέὲ ‗ ʎ   

where ὝὊὖ  is the TFP of firm Ὥ in industry j near the neighborhood of monitoring station k; 

Ὗὴὓέὲ is the predicted value from the first stage regression; ‗ and ʎ are industry and 

monitoring site fixed effects; and   is the error term. 

The regression results are presented in Table 5. We estimate the effects separately for firms 

in the polluting industries and for firms in the non-polluting industries. First, we find that the 

locations of hydrological stations can strongly predict the locations of water quality monitoring 

stations (Columns 1 and 3): if a firm is near the upstream of a hydrological station, it is also 

more likely to near the upstream of a monitoring station. The 2SLS estimates show that being 

in the near upstream of a water monitoring station decreases the TFP of a polluting firm by 

0.35 logarithmic units (Column 2), but it does not affect the productivity of non-polluting firms 

(Column 4).  

Note that the regression results in Table 5 are not readily comparable to those in Table 2, as 

these two approaches use very different sources of variation in the data and estimate different 

treatment effects with different identifying assumptions. The RD design estimates the average 

treatment effect at the cutoff, whereas the IV estimates the local average treatment effect for 

firms near a hydrological station. Nevertheless, the closeness of the magnitudes of the estimates 

between the two approaches (0.31 to 0.35 versus 0.35), and the consistent findings in both sets 

of results, provide additional support to the causal relationship between water quality 

monitoring and firm TFP.  

E. Spillover Effects 

Spillover effects, i.e. water quality monitoring somehow also affecting downstream firms, 

would not be a concern in a market with perfect competition, where there are many firms and 
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the output market is unaffected by local environmental regulation. However, in a market with 

imperfect competition or more complicated structures, spillovers can exist. In our empirical 

setting, both positive and negative spillovers can emerge, depending on how upstream firms 

and downstream firms interact.   

If industries are highly concentrated and their major producers are geographically clustered 

near the water quality monitoring stations, then imposing tighter environmental regulations on 

upstream firms would cause positive spillovers to downstream firms. The reasons are twofold. 

First, because upstream and downstream firms are the main producers and competitors in the 

market, increased production costs for the upstream firms will raise the market price of their 

products. Competing downstream firms will thus benefit because of this change in market 

conditions, not just because of the environmental enforcement affecting their upstream 

counterparts. Second, tighter environmental regulations also may cause inputs, both labor and 

capital, to move toward the downstream firms. If more productive factors flow to downstream 

firms, their TFP will be higher for this reason as well. 

Negative spillovers will emerge when clustered firms are collaborating instead of competing. 

This is particularly true if clustered firms are vertically integrated along the supply chain. If 

(geographically) upstream firms produce inputs for downstream firms, or vice versa, 

environmental regulations that increase upstream firmsô marginal costs of production will also 

make downstream firms less competitive. 

In the presence of spillovers, regardless of the sign, our baseline RD estimates can still be 

properly interpreted as the partial equilibrium effects of environmental regulation on 

productivity. However, when we extrapolate these estimates to the whole country, the existence 

of a positive spillover effect will exaggerate the economic costs of regulation, while a negative 

effect will attenuate the estimated costs.  

To assess whether or to what extent our findings are confounded by the potential spillover 

effects, we conduct a formal test using placebo downstream firms. Specifically, we first replace 

the actual downstream firms by their best matches from the sample of firms that are not in the 

neighbourhood of any monitoring stations, based on pre-2003 data. We then re-estimate the 

regression discontinuities for the matched firms using post-2003 data. These matched firms 

serve as placebo firms which are not affected by the potential spillovers between actual 

upstream and downstream firms. The intuition is that, if the spillover effects are insubstantial 

(downstream firms are not affected by monitoring stations), the placebo firms should have TFP 
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similar to the actual downstream firms. Using placebo downstream firms should lead to results 

that are quantitatively similar to the baseline estimates. 

In practice, we take the pre-2003 collapsed cross-sectional data and use a nearest neighbor 

matching strategy that finds the best matched firm from the pool of firms that are located 

outside the 10 km radius of the water monitoring stations for each downstream firm. These 

placebo downstream firms resemble the actual downstream firms in terms of TFP, industry 

type, and industrial output value before 2003. We then replace the actual downstream firms by 

the placebo firms in the post-2003 sample and estimate the regression discontinuities.  

The results are reported in Table 6. Upstream firms have significantly lower TFP than 

placebo downstream firms, suggesting that the baseline findings are not driven by a positive 

spillover effect on the downstream firms. We focus our discussion on the RD estimates after 

station and industry fixed effects are absorbed, in Panel B. Compared with placebo downstream 

firms, upstream firmsô log TFP is 0.48 to 0.61 units higher. These estimates are slightly larger 

than those in Table 3, but the differences are statistically indistinguishable. That implies that, 

if there may exist some spillover effect, this effect should be slightly negative. Consequently, 

the estimates in Tables 2 will only understate the economic costs of water pollution regulation. 

F. Sorting 

Environmental policies can affect firmsô production plans and their location choices. In 

particular, the pollution haven hypothesis (PHH) posits that polluting capital would flow from 

places with more stringent environmental regulations to places with less stringent regulations. 

This issue is important because it will affect the interpretation of the RD estimates. For 

example, if water quality monitoring causes more polluting firms to relocate to downstream 

areas and if these firms have higher TFP, our RD estimates will be biased upward. 

Alternatively, if polluting firms emerging downstream tend to have lower TFP (and therefore 

would be unlikely to survive in the upstream), our RD estimates will be biased downward.  

In this section, we examine the potential sorting behaviours among the polluting firms. As 

shown in Panel A of Figure 5, using the baseline sample (collapsed cross-section for 2000-

2007), we find that there is no discontinuity in the distribution of polluting firms around the 

location of monitoring stations. Following Cattaneo et al. (2017a, 2007b), we further conduct 

data driven manipulation tests on the density of polluting firms around monitoring stations. 

The results, which are summarized in Appendix Table S3, also suggest that no meaningful 

sorting behaviours exist in our data.  
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These results seem to contradict to the conventional wisdom that firms should relocate in 

response to tight environmental regulations, especially when the efficiency loss is large. We 

offer two explanations. First, recall that in Table 3 the regulation impacts are only statistically 

significant for the bigger firms. Sorting can be costly for large manufacturing firms because of 

large fixed asset investment. During our field trips, we also discussed with policy makers at 

different levels and many firm owners and learnt that it is not easy for large firms to relocate, 

both economically and politically, because they hire a large number of employees and are 

important contributors to local fiscal revenue.  

The second explanation, which can be empirically tested, is that we only capture the short-

term impacts. In Table 4, we see that the regulation effect only emerged after 2003 and did not 

become statistically different from zero until 2006. It seems highly likely that while in the short 

run firms were unable to relocate, they could do so in the long run. To test this hypothesis, we 

take the ASIF data in 2013, the most recent ASIF data available to us, and re-run the same set 

of density tests.13 As shown in Panel B of Figure 5, in 2013, the density of the polluting firms 

becomes slightly discontinuous at the cut-off: fewer polluting firms are located in the 

immediate upstream of monitoring stations. This finding suggests that more polluting firms 

leaving (or less firms emerging in) the upstream regions to avoid tighter regulation in the long 

run. The corresponding density tests results are reported in Panel B of Appendix Table S3 and 

we also see a tendency that fewer polluting firms are located in the immediate upstream of the 

monitoring stations. 

Given these results, we conclude that water quality monitoring does not induce immediate 

sorting of firms, so the estimated effect of regulation on TFP in previous sections is not 

confounded by firmsô relocation. However, in the long run, firms can relocate and sorting needs 

to be taken into account in assessing the impacts of regulations.  

G. Robustness to Different Specifications  

We check the robustness of our findings in Table 7. In Panel A, we re-estimate our models 

using a method proposed by Calonico, Cattaneo, and Titiunik (2014) in which local linear 

regression estimates can be ñbias-correctedò for biases resulting from choice of bandwidth. 

They also suggest an alternative method for calculating standard errors that is more 

                                                 

13 The ñvalue-addedò variable is only available in the ASIF dataset until 2007; therefore, data in the later years 

could not be used for TFP analysis. 
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conservative than the conventional procedure. Using these alternative methods, we generate 

results that are qualitatively similar to the results featured in our main analysis.  

In Panel B, we use alternative bandwidth selectors. The bandwidth chosen in our main 

analysis is based on one common MSE (Mean Square Error)-optimal bandwidth selector for 

both sides across the cutoff. We supplement this analysis with five other bandwidth selectors: 

(1) MSE-two: two different MSE-optimal bandwidth selectors (below and above the cutoff) 

for the RD treatment effect estimator; (2) MSE-sum: one common MSE-optimal bandwidth 

selector for the sum of regression estimates (as opposed to the difference thereof); (3) CER 

(coverage error rate)-optimal: one common CER-optimal bandwidth selector for the RD 

treatment effect estimator; (4) CER-two: two different CER-optimal bandwidth selectors 

(below and above the cutoff) for the RD treatment effect estimator, and (5) CER-sum: one 

common CER-optimal bandwidth selector for the sum of regression estimates (as opposed to 

the difference thereof).14 The results remain the same regardless of the bandwidth selector 

used.  

In Panel D, we conduct a placebo test using ñfakeò monitoring stations. We move the original 

stations upstream or downstream by 5 km or 10 km and re-estimate the RD models. We find 

that the discontinuity in TFP is only evident at actual monitoring stations and not at the fake 

stations.  

In the Appendix, we present more robustness checks. In Appendix Table S4, we report the 

RD estimates using the parametric approach, Equation (2). We find quantitatively similar 

results: water quality monitoring decreases polluting firmsô TFP but has no impact on non-

polluting firms. However, the estimates from the parametric approach are more sensitive to 

the choice of the polynomial function form and inclusion of different samples. In Appendix 

Table S5, we use an alternative TFP measure suggested by Ackerberg et al. (2015) as the 

outcome variable, and again the results remain unchanged.  

 

V. Channels: What Happened to the Upstream Firms? 

A. Regulation and Firm Production 

How do firms respond to tighter environmental regulations? In this section, we examine the 

channels through which environmental regulation affects firmsô TFP. To rationalize the 

                                                 

14 Please refer to Calonico, Cattaneo, Farrell (forthcoming) for technical details.  
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baseline findings and guide the following discussions, we present a theoretical framework to 

illustrate how environmental regulation can negatively affect TFP in Appendix B. In this 

model, firms need to use extra labor and capital to clean up emissions and the government can 

enforce tighter environmental regulation by increasing the emission tax. Facing a higher 

emission tax, firms need to hire more labor and capital for emission abatement, but these extra 

inputs do not directly contribute to output production. As a result, tighter environmental 

regulation will lead to a reduction in firmsô TFP.  

In Table 8, we estimate the impacts of water quality monitoring on several key variables and 

test whether these findings are consistent with our theoretical predictions. Panel A of Table 8 

summarizes the results for output-related measures: value added and profit. Although the 

effects of water monitoring are statistically insignificant, we see a tendency that downstream 

firms earn more profit despite not producing more product. In Panel B of Table 8, we focus on 

labor, capital, and intermediate input. Labor is measured by the number of employees. We find 

that upstream firms hire more employees (16%) but the effect is statically insignificant. 

Upstream firms also tend to use slightly more intermediate input for production. Capital stock 

is measured by two different methods for robustness, following Yang (2015) and Brandt at al. 

(2012) respectively. We see that upstream firms have significantly larger capital stock 

compared to their downstream counterparts and the effects are statistically significant using 

different estimators. These results are consistent with the ubiquitous anecdotal evidence that 

polluting firms have to buy expensive equipment or abatement facilities to cope with tighter 

environmental regulation standards.  

In Panel C of Table 8, we further present results for naïve  (reduced-form) productivity 

measures, calculated by dividing firmsô value-added by labor or capital stock. Similarly, both 

labor and capital productivity are higher in downstream firms, with the impact on capital 

productivity being statistically significant. These results show that our baseline findings are 

robust to the use of simpler and more transparent productivity measures and reflect a real loss 

in firm productivity, rather than being mechanical to specific procedures of TFP construction. 

In Panel D of Table 8, we test the Porter Hypothesis. The outcome of interest is firmsô 

investments in research and development. The results show that tighter environmental 

regulation increases firmsô investment in research and development, which is consistent with 

the Porter Hypothesis, but the result is statistically insignificant due to large standard errors.  

The results in Table 8 suggest that the impacts of environmental regulation on TFP are 

manifested through multiple channels. The overall pattern confirms the predictions of our 
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model: facing tighter environmental regulations, firms need to install expensive facilities (and 

potentially also hire more labor) to abate emission, leading to lower productivity.   

B. Regulation and Emissions 

The model in Appendix B also predicts that tighter environmental regulations will decrease 

both emission levels and emission intensity (emission per unit of output). In other words, 

upstream polluting firms are expected not only to reduce total emissions, but also to adopt 

cleaner technologies. This is consistent with the previous finding that upstream firms have 

larger capital stock. In this section, we formally examine the impacts of water quality 

monitoring on firmôs emission and emission intensity.  

Ideally, we would like to investigate the emissions for the same set of firms covered in our 

ASIF sample, so that we can directly link the reduction in emissions to the reduction in TFP. 

However, the ASIF sample does not include information on emissions. Instead, we use the ESR 

data, which documents various types of pollutant emissions for all the major polluting firms in 

each county.  

We apply the same set of RD estimators to firm-level emission data (which is equivalent to 

polluting-source level data) from the ESR database. We examine four water pollution 

outcomes: (1) total amount of COD emitted, (2) COD emission intensity (total COD/total 

output value), (3) total amount of wastewater discharged, and (4) wastewater discharge 

intensity (total wastewater/total output value).  

Table 10 reports the local linear RD estimates for the four outcomes. Station fixed effects 

are absorbed before estimation. Different RD estimates are reported, including conventional 

local linear RD estimates, bias-corrected estimates, and bias-corrected estimates adjusted with 

robust standard errors.  

In Panel A, we can see that both COD emissions and COD emission intensity are higher for 

downstream firms, and most results are statistically significant at the 5% or 10% level. COD 

emissions by polluters immediately upstream from monitoring stations are 0.75-0.99 

logarithmic units lower than those from firms immediately downstream. This implies that water 

quality monitoring reduces COD emission levels in upstream firms by 52.8%ï62.8% (e-0.75-1 

to e-0.99-1). For COD emission intensity, water quality monitoring reduces the COD emission 

intensity in upstream firms by 38.7%ï49.3% (e-0.49-1 to e-0.68-1).  
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In Panel B, we examine wastewater discharge. Downstream firms tend to discharge more 

wastewater but the results are statistically insignificant due to large standard errors. The results 

for wastewater discharge intensity, however, are statistically significant at the 5% or 10% level.  

Combining both sets of results, we conclude that upstream firms emit less COD and 

wastewater overall and also produce fewer COD emissions or less wastewater per value of 

output (by adopting cleaner technologies), confirming the theoretical predictions. 

Recall that the ESR database samples the most polluting firms in each county. Given that we 

focus on a small region around each monitoring station, many of the upstream and downstream 

firms are located within the same county. This causes a potential selective attrition problem 

because upstream firms facing tighter regulations tend to emit less and are thus less likely to 

be sampled in the ESR database compared to downstream firms. If such selection exists, our 

results in Table 10 will be underestimated, because the upstream firms that reduced the most 

pollution are no longer included in the sample. Thus, when we evaluate the environmental 

benefits of water monitoring, the estimates in Table 10 should be regarded as lower bounds.  

While the emission results are consistent with our story, we must acknowledge that the 

quality of the ESR data can be questionable, and thus the emission results should be interpreted 

with caution. For instance, we find that there are large amounts of missing values and zeros in 

the ESR data and location, industry, firm, and year fixed effects combined can only explain a 

small portion of firmsô emissions. These patterns seem suspicious to us and raise susbtaintial 

concerns about the quality of Chinaôs environmental data. In fact, this can be the reason that 

the government rely on the readings of monitoring stations, instead of the ESR data collected 

from polluting firms, to measure the effectiveness of pollution control, although the latter 

would be more powerful and better-targeted in a world without data manipulation.  

C. Political Economy of Water Quality Monitoring 

Our empirical analyses have shown that upstream firmsô productivity is negatively affected 

by water quality monitoring. Our explanation is that, because water quality readings are 

politically important, local officials have incentives to enforce tighter regulations on upstream 

fi rms than on downstream firms. In this section, we explicitly explore such political-economic 

incentives behind water quality monitoring.  

First, we document how upstream and downstream firms are treated differently by the 

government. In the ESR dataset, we find that upstream firms have substantially lower COD 

emission and wastewater discharge. In the ASIF dataset, we also have information on the waste 
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discharge fees paid by each firm in 2004. If the government imposes a ñfairò rule of punishing 

upstream and downstream firms for emissions, we should expect downstream firms to pay 

more than upstream firms, due to their higher emission levels. However, as shown in Panel A 

of Table 10, we find that upstream firms actually pay significantly more waste discharge fees 

to the government, despite that they emit much less. In other words, local governments are able 

to charge firms at differentiated emission fee rates, even though these firms are located close 

to each other and are within the same administrative jurisdiction. This double-standard 

phenomenon is not unique in our study and has been documented in some other settings as 

well. For example, Liu (2017) investigates Chinaôs tax reform and finds that local governments 

of China are able to collect additional informal taxes from certain firms for fiscal revenue. Fan 

et al. (2017) study Chinaôs value-added tax (VAT) system and show that firms located farther 

away from local tax agencies experience the largest increase in tax burden after VAT 

enforcement costs are brought down by a new information technology. Local governments in 

China have substantial discretion in the management of taxation and various fees. 

Second, we examine the political incentives of local officials. As documented in the Chinese 

meritocracy literature, China has an implicit rule that a prefecture-level governor cannot be 

promoted to a higher level if his/her age reaches 57 (for example, Wang, 2016; Xi et al., 2017). 

This creates a discontinuous drop in political incentives at the age of 56. To test whether the 

TFP effects of water quality monitoring can be explained by political incentives, we digitize 

the résumés of every prefectural party secretary (the highest-ranked political leader in a 

prefectural city) between 2000 and 2007. We define a leader as ñhaving strong political 

incentivesò if he/she is younger than 56 in a given year, and ñhaving weak political incentivesò 

otherwise. We then assign a monitoring station either to an ñincentivizedò or ñun-incentivizedò 

party secretary in a given year and analyze two subsamples based on whether the monitoring 

station is under the governance of an ñincentivizedò leader in a particular year. The RD results 

are summarized in Panel B of Table 9.  

We find that, when the prefectural city leader has strong political incentives, water quality 

monitoring has a statistically significant impact on upstream firmsô TFP. The estimated impacts 

range from 0.57 to 0.66 using different kernel functions and are nearly twice as large as the 

baseline results in Table 2. In sharp contrast, when the prefecture city leader has weak 

promotion incentives, the TFP gap remains precisely at zero in all specifications. These results 

imply that the TFP discontinuity across the monitoring stations is driven by the political 

incentives of local officials.  
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Third, despite the fact that state-controlled monitoring stations are established and run by the 

central government, it is still possible that local officials can exert their administrative powers 

to influence the water quality monitoring. Our concern is that, if local governments can 

manipulate water quality readings, they may be less incentivized to regulate upstream firmsô 

emissions. These is evidence that air pollution data has been manipulated at the margin in some 

Chinese cities because air quality is important for political evaluation (Ghanem and Zhang, 

2014).  

To test this hypothesis, we estimate the RD separately for two types of monitoring stations: 

automatic stations and manual stations. Automatic stations conduct all water quality tests 

automatically and report the data directly to the central government, while manual stations 

require technicians to conduct the tests manually.15 Because it is difficult  for local governments 

to manipulate data from the automatic stations, we expect a larger TFP gap around automatic 

stations. 

Panel C of Table 9 reports the findings: while we see an upstream-downstream TFP gap for 

both types of stations, this effect is much larger for automatic stations (almost three times 

larger). As the sample size shrinks substantially, most RD estimates are statistically significant 

only at the 10 percent level.  

D. Enforcement in Practice 

The results in the previous subsections are instrumental for the understanding of Chinaôs 

environmental regulations. In particular, we show that similar firms adjacent to each other can 

live in dramatically different regulatory environments, leading to different firm behaviors and 

diverging productivity. 

To confirm these findings with qualitative materials, we conducted multiple field trips and 

interviewed dozens of firm managers and technicians working in the monitoring stations. Our 

discussions reveal that, not only do upstream firms bear larger burdens of emission fees, as 

shown in our empirical analyses, they also face a variety of command and control regulations 

that cannot be easily quantified in our data. For example, in one city, we learned that firmsô 

production could be abruptly restricted or even suspended by the local government in order to 

improve water quality readings. In Chinaôs most polluted river basin, Huai River basin, 

                                                 

15 Most stations were manual in the 1990s and early 2000s, but these were gradually replaced by automatic 

stations, in order to improve the accuracy of water quality reporting. Weekly water quality reports from the 

automatic stations are posted by the MEP at http://datacenter.mep.gov.cn/index and real-time water quality 

readings can be accessed at http://online.watertest.com.cn/help.aspx. 

http://datacenter.mep.gov.cn/index
http://online.watertest.com.cn/help.aspx
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environmental inspectors were placed in the polluting firms from time to time to ensure their 

compliance with environmental standards. These inspectors visited upstream firms more 

frequently because they knew these firms had large impacts on water quality readings. In some 

extreme cases, if certain firms do not comply with the regulation, electricity and natural gas 

supply could even be cut in order to meet the cityôs environmental abatement target.  

Regulatory documents from local governments tell a similar story. Urgent orders were issued 

when local governments realized water quality readings might fail to meet higher-level 

government policy targets. A recent example of such an order, which attracted wide media 

attention in China, is presented in Appendix C. In this example, Kunshan city in Jiangsu 

Province required 270 manufacturing firms to suspend their production in order to improve 

water quality. Sluice gates along the rivers were closed and the pumping facilities were shut 

down so that no wastewater could be discharged into the rivers, even after abatement treatment. 

Special investigators were sent to the plants to enforce the production suspension policy. While 

some of these command and control policies cannot be quantitatively analyzed in our empirical 

analysis, they do help explain why Chinaôs water quality monitoring can be so effective in 

reducing water pollution and has such a significant impact on upstream firmsô productivity.  

 

VI. Economic Significance 

A. Economic Costs under Various Scenarios 

Our baseline model estimates that water quality monitoring has caused an average loss in 

TFP of 0.31 logarithmic units for polluting firms (as shown in Panel B of Table 2), equivalent 

to a 26.7% drop. To translate this TFP loss into monetary value, one may ask what would 

happen if all of China enforced regulatory standards as stringent as those faced upstream. The 

total industrial output value (total revenue) from the polluting firms was about 11 trillion 

Chinese yuan (1,380 billion USD) in 2006.16 If all these firms were subject to water quality 

monitoring regulations as stringent as those faced by the upstream firms in our empirical 

setting, the total annual loss in output value would exceed 4.0 trillion Chinese yuan (502 billion 

US dollars) based on 2006 industrial output value.17  

                                                 

16 We use the 2006 exchange rate of 1:7.97. 
17 We compute the difference between the counterfactual output of 14,973.7 billion Chinese yuan (calculated 

by 10975.7/(1-26.7%)) and the observed output of 10,975.7 billion Chinese yuan in the polluting industries in 

2006. The calculations for other parts follow the same method. 
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However, the regulations faced by upstream firms may be too stringent to apply to all the 

other firms in the country. A more informative counterfactual would be to determine the TFP 

loss and economic costs associated with a given amount of emission abatement. Recall that all 

the firms in the ESR database together contribute 85% of Chinaôs total emissions, and all of 

them are local large emitters regardless of industry or revenues.  

Because we are unable to match the ESR firms with ASIF firms, we cannot directly link the 

TFP estimates with COD estimates without imposing additional assumptions. The TFP and 

COD effects of water monitoring we estimated in previous tables essentially are the following:  

(5)        4&0ȿ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎ%4&04&0ȿ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎ 

(6)        #/$ ȿ#/$ Ø %#/$ #/$ȿ#/$ Ø 

where 4&0ȿ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎ is the average treatment effect of water quality 

monitoring on TFP for firms with annual revenues over 5 million yuan, and #/$ ȿ#/$

 Ø is the average treatment effect of monitoring on emitters that produce COD pollution more 

than a given threshold Ø. 4&0 is the TFP for downstream firms, and 4&0 is the TFP for 

upstream firms.  

The average treatment effects on TFP and COD over the entire distribution are:  

(7)      4&0  0ÒÏÂ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎϽ4&0ȿ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎ 

0ÒÏÂ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎϽ4&0ȿ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎ 

(8)     #/$ 0ÒÏÂ#/$ØϽ#/$ ȿ#/$Ø 0ÒÏÂ#/$ØϽ#/$ ȿ#/$Ø 

where the probabilities could be written as the share of firms appearing in each sample: 

0ÒÏÂ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎ,  0ÒÏÂ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎρ ; 

0ÒÏÂ#/$Ø ,  0ÒÏÂ#/$Ø ρ . 

While we cannot directly estimate ñ4&0ȿ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎò and ñ#/$ ȿ#/$Øò 

in the data, we attempt to back them out by extrapolating the intra-sample heterogeneous 

treatment effects on TFP and COD. 

In Table 11, we estimate the heterogeneous treatment effects of water quality monitoring on 

TFP with respect to firmsô revenues, and the heterogeneous treatment effects of water quality 

monitoring on COD emission intensity with respect to firmsô total COD emissions using the 
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polynomial RD approach.18 The revenue heterogeneity is estimated by using the polynomial 

RD approach with an interaction term between the downstream dummy and firmsô revenue 

(log). We use the specification in Column 1 of Table S4 as our preferred parametric 

specification because it generates the closest RD estimates to the non-parametric RD estimates. 

To allow for non-linear heterogeneity, we also include quadratic and cubic interactions in the 

regressions. Based on the regression results, we then predict the estimated impacts at different 

levels of revenues and summarize the results in Panel A. We find that the TFP effect is 

substantially larger for larger firms and non-existent for smaller firms. The effects of water 

quality monitoring on TFP for the smallest 20% of firms (among all the firms with an annual 

revenue of above 5 million Chinese yuan) become negligible. The results are the same if we 

use quadratic or cubic heterogeneity. In Panel B, we conduct a similar analysis for COD 

emission intensity and check whether the effect of monitoring varies across different polluting 

sources. We find the same pattern: larger emitters are strongly affected by water quality 

monitoring, while the treatment effect becomes essentially zero for the smallest 20% of 

emitters in the ESR sample. These findings again confirm that the ñGrasping the Large and 

Letting Go of the Smallò strategy discussed in section IV B is applied to the context of water 

quality regulations.  

In addition, there is an ñexitò variable in the ASIF database documenting whether a firm is 

excluded from the sample in the following year. A firm that earns less than 5 million Chinese 

yuan in a particular year, based on the sampling criteria, is dropped from (ñexitsò) the database 

the next year. This outcome provides additional information on whether water quality 

monitoring affects firms at the margin. In Appendix Table S7, we find that the probability of 

exiting the ASIF database is not affected by water quality monitoring. This finding again shows 

that monitoring does not affect smaller firms at the margin.  

Given these findings, if we assume that water quality monitoring does not increase the TFP 

or emission levels of upstream firms, and that the size of the treatment effect on TFP or 

emissions is a well-behaved function with respect to revenue or emissions, then we can make 

the following extrapolations:  

(9)     4&0ȿ2ÅÖÅÎÕÅυ ÍÉÌÌÉÏÎπ 

                                                 

18 Ideally, we should also apply the non-parametric RD estimates to different sub-groups of firms and estimate 

the heterogeneity separately for each sub-group. However, doing so significantly reduces the sample size of each 

group and we would not have strong enough statistical power to make a reliable inference. In Appendix Table S6, 

we divide the sample into only two groups and find results that are largely consistent with Table 11: the impacts 

of water quality monitoring are primarily experienced by larger firms or emitters and are negligible for their 

smaller counterparts. 
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#/$ ȿ#/$Ø π 

Intuitively, as the smallest producers and emitters in our ASIF or ESR dataset already have 

zero treatment effects, the even smaller producers and emitters (those excluded from the 

ASIF/ESR dataset) also should have zero treatment effects. We can therefore simplify 

Equations 7 and 8 to the following: 

(10)        ὓὙὛ Ͻ
ȿ  

ȿ  
 

The sample we use for estimation includes 6,581 firms in polluting industries from the ASIF 

database and 9,888 polluters from the ESR database. Using this equation, we can calculate the 

economic costs of water pollution abatement.   

In Table 12, we compute the economic costs for various scenarios. For easy reference, Panel 

A reproduces the key results from Tables 2 and 10, and Panel B calculates the economic costs. 

We focus on the estimates in Column 1 because they produce modest values across all 

specifications. We first focus on COD emissions. Water quality monitoring reduces COD 

emissions by 0.83 logarithmic units and decreases TFP by 0.31 logarithmic units. A 10% 

change in total COD emissions causes a 2.49% change in TFP levels in the polluting 

industries.19 Using alternative specifications produces slightly different results, which are 

reported in Columns 2ï4. Similar interpretations can also be applied to COD emission 

intensity. In Column 1, an upstream firmôs COD emission intensity is about 0.55 logarithmic 

units lower than that of a downstream firm. This means a 10% change in COD emission 

intensity causes a drop in TFP by about 3.75%. Other combinations create slight variations, as 

summarized in Columns 2ï4. 

During Chinaôs 11th Five-Year Plan, total COD emissions were reduced by 12.45% from 

2006 to 2010 (with the target being 10%). If we attribute the entire COD reduction from 2006 

to 2010 to the polluting industries, then this 12.45% abatement in COD emissions would cause 

a total output loss worth 352 billion Chinese yuan (44.2 billion USD) in the polluting industries, 

based on 2006 industrial output values.20 The annual reduction in COD emissions between 

                                                 

19 The way we interpret this relationship is analogous to the Wald estimator in the two-stage setting, except that 

we do not have a readily available tool to combine the two stages from two different samples non-parametrically 

and we need to adjust for sample size. Water quality monitoring reduced COD emissions by 0.83 logarithmic 

units and TFP by 0.31 logarithmic units, so a 10% change in COD emissions will lead to a 

(6,581/9,888)*(0.31/0.83)*10% (= 2.49%) change in TFP.  
20 We estimate that a 10% change in total COD emissions will cause a 2.49% change in TFP, which implies 

that a 12.5% change in total COD emissions will cause a 3.11% change in TFP. We then compute the difference 

between the counterfactual output of 11,328 (10,975.7/(1-3.11%)) billion and the observed output of 10975.7 

billion in 2006. The calculations for other parts follow the same method.  
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2006 and 2010 was roughly 2.5%, equivalent to an annual loss of 69 billion Chinese yuan (8.7 

billion US dollars) in gross industrial output value per year using 2006 Chinese yuan.  

In 2015, the gross output value (of firms above designated size) in China exceeded 110 

trillion Chinese yuan, and about 35% of output value (38.8 trillion  Chinese yuan) is contributed 

by the polluting industries. The central government aims to reduce COD emissions by another 

10% during the 13th Five-Year Plan, from 2016 to 2020. Applying our estimates to the 2015 

data, we can infer that the total output loss would be around 990 billion Chinese yuan (159 

billion US dollars) under current monitoring and enforcement practices.21 Other specifications 

generate slightly different estimates, ranging from 936 to 1,099 billion Chinese yuan (150.5 to 

176.7 billion USD).   

Note that we make two strong assumptions in calculating the economic costs. First, we 

implicitly assume the marginal cost of abatement is linear so that the large and small emission 

reductions have proportional impacts on productivity. Second, we assume that the estimates in 

Table 10 are reliable and potential data manipulation would not significantly change our 

estimates.  

B. Potential Sources of Bias 

There are several reasons why the estimates in Table 12 may understate the true economic 

costs of Chinaôs water pollution controls.  

First, we use a conservative estimate of the effect of monitoring on TFP in our calculations. 

In fact, as shown in Table 3, the TFP loss due to water quality monitoring has increased from 

0.31 to 0.40 since 2003. If we use these larger TFP estimates, the associated economic costs 

will increase.  

Second, although we provide evidence that the smaller firms or emitters in our data are not 

affected by water quality monitoring, the assumption that water quality monitoring does not 

affect even smaller (unobserved) firms or emitters at all may still be violated. Shutting down 

very small polluters can be a feasible policy for some local governments to enforce tighter 

environmental standards. The TFP loss due to shutdown cannot be captured in our estimation.  

Third, the distinction between polluting and non-polluting industries is based on two- to 

three-digit industrial codes. This distinction does not rule out the possibility that some firms in 

                                                 

21 We use the 2015 exchange rate of 1 USD to 6.22 Chinese yuan.  
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the non-polluting industries may also emit pollutants and are therefore regulated by local 

governments. If this is the case, the estimated TFP and economic loss are understated.  

Fourth, some regions have a high density of monitoring stations as well as multiple tributaries 

along the main streams. These monitoring stations are excluded from our sample because we 

cannot credibly identify the upstream and downstream townships. If  there are more monitoring 

stations in more polluted regions, some of the most polluted regions and firms are excluded 

from our sample; if environmental regulations are even more aggressively enforced in more 

polluted regions, the TFP loss in these regions could be even larger.  

Finally, we only compute the direct economic costs caused by TFP loss. Previous research 

has shown that tighter environmental regulation can also cause unemployment, firm relocation, 

and worker migration, and can change the flow of investment. These indirect costs are non-

trivial and should be considered when calculating the overall economic costs of environmental 

regulations.   

VII . Conclusion 

As the income level of the Chinese people rises, the country starts to face a stark tradeoff 

between preserving high environmental quality and sustaining robust economic growth. This 

paper is the first study to credibly estimate the impacts of environmental regulations Chinese 

manufacturing firms and provides a timely assessment of the economic costs of Chinaôs water 

pollution control policies. We exploit a regression discontinuity design based on the upstream-

downstream relationship of water quality monitoring stations in China and find that tighter 

water quality regulations lead to significant TFP loss for firms located upstream from 

monitoring stations. This is the case for firms in polluting industries; such a discontinuity is 

not observed for firms in non-polluting industries. 

We estimate that water quality monitoring reduces TFP levels by 26.7% in firms located 

immediately upstream from monitoring stations. This TFP loss is driven mainly by private 

Chinese firms instead of state-owned or foreign firms. A closer examination of the TFP effect 

by year reveals that the impacts of water quality controls have been greater in more recent 

years, consistent with the fact that environmental regulations in China have tightened over the 

past decade.     

We also investigate the impacts of water quality monitoring on emissions. Using another 

firm-level dataset, we find that, at the extensive margin, upstream firms emit substantially 

(52.8%ï62.8%) less COD and industrial wastewater than downstream firms; and, at the 
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intensive margin, upstream firms adopt cleaner technology and emit less pollution per value of 

output (38.7%ï49.3%).  

Combining both sets of estimates, we calculate the economic costs of Chinaôs water pollution 

control policies. We estimate that a 10% abatement in COD emissions and COD emission 

intensity can lead to a 2.35%ï2.75% and 3.43%ï4.21% drop in a polluting firmôs TFP 

respectively. These estimates imply that Chinaôs efforts in reducing COD emissions from 2016 

to 2020 would cause a total loss in output of 936 to 1,099 billion Chinese yuan (150.5 to 176.7 

billion US dollars) in the polluting industries, at least if current monitoring and enforcement 

practices remain unchanged.  

Overall, our findings highlight the negative impacts of environmental regulations on 

productivity. The estimated efficiency loss is substantial; so high environmental quality comes 

at high economic cost. This is particularly salient for fast-growing economies that rely heavily 

on manufacturing.  

Political incentives are fundamental to understanding Chinaôs environmental regulation. We 

show that the effect of environmental regulation depends on local officialsô chances of 

promotion and local governmentôs power to manipulate environmental data. Specifically, the 

TFP difference between upstream and downstream firms becomes twice as large when the city 

leader has a greater probability of promotion, and it approaches zero when the city leader 

cannot be promoted. The effect of water quality monitoring on TFP is substantially larger for 

stations that automatically test and report water quality to the central government.  

Our findings also demonstrate that environmental regulations have profound distributional 

consequences. In the context of water quality monitoring, emission controls in upstream 

regions will  improve the water environment in downstream regions. Upstream firms abate 

emissions and earn reduced profits, and jobs can be lost if polluting firms are shut down, while 

downstream regions enjoy both higher environmental quality and more rapid economic growth. 

In the long run, these effects may imply a spatial redistribution of economic activity, population 

and social welfare.  

Nevertheless, our findings do not answer the broader question of whether Chinaôs current 

environmental regulation standards are too aggressive or too lenient, because we do not know 

Chinese peopleôs willingness to pay for cleaner surface water. After all, little research has been 
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conducted on the socio-economic costs of water pollution in China.22  To what extent 

environmental regulations should be designed and enforced, especially in developing countries 

that rely heavily on manufacturing industries, remains an underexplored research area.  

We conclude by pointing out some limitations of this study and offering directions for future 

research. First, the estimates in this paper are derived in a partial equilibrium framework. We 

focus on a unique setting that affects only a small set of firms. Large-scale regulation will  affect 

aggregate output and input markets, and our estimates should be interpreted with caution when 

used to evaluate large-scale environmental policies. Second, our sample covers a relatively 

short period of time, while firms might be able to better adjust investment and production in 

the long run. With the growing availability of firm-level longitudinal data, investigating how 

firms respond to regulation over long periods of time will  be an important area for future 

research. Relatedly, sorting and its subsequent welfare implications are important for long-term 

impact assessment. Finally, with the expectation of increasingly tighter environmental 

regulations in China, entrepreneurs and investors may choose to develop businesses in non-

polluting industries. Tighter environmental regulations in the polluting industries may create 

externalities affecting non-polluting industries, and there is a lack of rigorous empirical studies 

to quantify the impacts of such spillover effects on the economy. 

 

  

                                                 

22 Two exceptions are that (1) Ebenstein (2012) finds that Chinaôs surface water pollution has caused an 

increase in deaths from digestive cancers; and (2) He and Perloff (2016) find that a deterioration in surface water 

quality from Water Quality Grade Level I to Level III is associated with higher infant mortality.  
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Table 1. Covariate Balance Between Upstream Downstream Firms   

  Mean (within 10km)  Mean Difference 

  Downstream Upstream  Ò10km Ò5km 

    (1) (2)   (3) (4) 

Panel A. Time-Invariant Factors     

 Year of Opening 1982.55  1984.16   1.92 -5.85 

  (76.06) (53.87)  (2.99) (6.60) 

 SOE 0.24  0.27   0.02 0.00 

  (1=Yes, 0=Others) (0.43) (0.44)  (0.02) (0.08) 

 Foreign 0.16  0.19   -0.03 -0.07** 

  (1=Yes, 0=Others) (0.37) (0.39)  (0.02) (0.03) 

Panel B. Pre-2003 Firm-Level Characteristics    

 Value Added 8.42  8.48   0.07 0.13 

 (log) (1.24) (1.32)  (0.06) (0.27) 

 Profit 1.19  2.13   0.95* 1.45 

 (billion yuan) (6.65) (11.75)  (0.56) (2.28) 

 # of Employee 5.06  5.15   0.09 0.07 

 (log) (1.09) (1.15)  (0.06) (0.10) 

 Capital Stock 1# 8.96  9.04   0.11 0.34 

 (log) (1.71) (1.83)  (0.08) (0.21) 

 Capital Stock 2# 9.00  9.07   0.10 0.29 

 (log) (1.70) (1.83)  (0.08) (0.23) 

 Intermediate Input 9.38  9.48   0.07 0.18 

 (log) (1.32) (1.38)  (0.06) (0.25) 

 Tax 2.22  2.26   -0.08 0.21 

 (log) (2.18) (2.27)  (0.10) (0.31) 

 Obs. 2,190  2,659   2,742 970 

Notes: Data are collected from the ASIF data in 2000. Columns 1ï2 report the means and 

standard deviations of firm characteristics. In columns 3ï4, we restrict our sample to 10km 

and 5km from water quality monitoring stations and test the covariate balance between 

upstream and downstream firms. The difference coefficients are obtained by running OLS 

regressions of firm characteristics on an upstream dummy and water quality monitoring station 

and industry fixed effects. Standard errors reported in the parentheses are clustered at the water 

monitoring station level. # Capital Stock 1 measures the value of fixed assets at the end of year 

and Capital Stock 2 measures the annual average value of fixed assets.  

  



Table 2. RD Estimates of the Impact of Water Quality Monitoring on TFP     

  Polluting Industries Non-Polluting Industries 

    (1) (2) (3) (4) (5) (6) 

         
Panel A: Water Quality Monitoring and TFP       

 TFP (log) - Polluting Industries 0.36 0.38 0.43 -0.00 0.02 -0.05 

  (0.23) (0.24) (0.28) (0.14) (0.15) (0.14) 

 Bandwidth (km) 4.18  3.88  2.88 4.71 4.14 4.19  

              

Panel B: Water Quality Monitoring and Residual TFP             

 TFP (log) - Polluting Industries 0.25* 0.25** 0.33** -0.01 0.00 0.02 

 (Station FE Absorbed) (0.14) (0.13) (0.15) (0.09) (0.10) (0.11) 

 Bandwidth (km) 5.80  5.98  4.82  6.02  5.48  4.26  

              

Panel C: Water Quality Monitoring and Residual TFP             

 TFP (log) - Polluting Industries 0.31** 0.31** 0.35** 0.02 0.03 0.03 

 (Station and Industry FE Absorbed) (0.15) (0.15) (0.16) (0.08) (0.08) (0.09) 

 Bandwidth (km) 6.56  6.54  5.41  5.553 4.918 4.329 

                

 Obs. 6,582 6,582 6,582 12,422 12,422 12,422 

  Kernel  Triangle Epanech. Uniform Triangle Epanech. Uniform 

Notes: Each cell in the table represents a separate regression. TFP is estimated using Olley and Pakes (1996) method. The discontinuities at 

monitoring stations are estimated using local linear regressions and MSE-optimal bandwidth proposed by Calonico et al. (2014) and Calonico 

(2017) for different kernel weighting methods. Standard errors clustered at the monitoring station level are reported below the estimates. * 

significant at 10% ** significant at 5% *** significant at 1%. 



Table 3. Heterogeneous Impacts of the Impact of  Water Quality Monitoring on TFP  

  

Residual TFP ï Polluting 

Industries 

Residual TFP ï Non-Polluting 

Industries 

    (1) (2) (3) (4) (5) (6) 

        
Panel A: By Ownership      

 Private Firms 0.34** 0.37** 0.31* 0.04 0.04 0.03 

 

 
(0.17) (0.18) (0.18) (0.08) (0.08) (0.09) 

 Obs. 5,636 5,636 5,636 10,084 10,084 10,084 

 

Band

W 5.965 5.590 5.087 6.052 6.059 5.537 

 SOEs -0.31 -0.16 0.23 -0.13 -0.10 -0.01 

 

 
(0.52) (0.54) (0.50) (0.25) (0.25) (0.27) 

 Obs. 635 635 635 1,357 1,357 1,357 

 

Band

W 4.282 4.474 4.407 4.724 4.545 3.955 

 Foreign Firms -0.06 -0.07 -0.11 -0.12 -0.15 0.02 

 

 
(0.27) (0.28) (0.31) (0.40) (0.42) (0.25) 

 Obs. 1,104 1,104 1,104 2,427 2,427 2,427 

 

Band

W 6.927 6.541 5.479 3.287 3.070 4.286 

        
Panel B: By Size      

 Small Firm 0.16 0.16 0.14 -0.13 -0.12 -0.14 

  (Empl<50) (0.29) (0.24) (0.25) (0.15) (0.14) (0.13) 

 Obs. 1,998 1,998 1,998 4,357 4,357 4,357 

 

Band

W 7.400 8.096 6.273 3.823 3.985 3.758 

 Large Firm 0.41***  0.42***  0.40** -0.01 0.01 0.04 

   (EmplÓ50) (0.14) (0.15) (0.17) (0.09) (0.10) (0.11) 

 Obs. 5,369 5,369 5,369 9,691 9,691 9,691 

 

Band

W 4.825 4.738 4.520 4.610 4.674 4.513 

        
Panel C: By Firm Age      

 Old Firms 0.33* 0.39** 0.45** 0.05 0.05 0.04 

  (0.17) (0.19) (0.21) (0.09) (0.09) (0.09) 

 Obs. 4,481 4,481 4,481 8,373 8,373 8,373 

 

Band

W 6.695 5.881 4.624 5.432 5.199 4.526 

 Young Firms 0.48** 0.51** 0.39 -0.03 -0.00 0.07 

  (0.19) (0.21) (0.26) (0.16) (0.18) (0.20) 

 Obs. 1,438 1,438 1,438 2,627 2,627 2,627 

 

Band

W 3.768 3.537 3.798 5.768 5.084 4.357 

        
  Kernel  Triangle Epanech. Uniform Triangle Epanech. Uniform 

Notes: Each cell in the table represents a separate regression. Monitoring station and industry 

fixed effects are absorbed before estimating regression discontinuity. In columns 1ï3, we 
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report the estimated discontinuity for polluting industries, and in columns 4ï6, we report the 

estimated discontinuity for non-polluting industries. Local linear regression and MSE-

optimal bandwidth proposed by Calonico et al. (2014) and Calonico (2017) for different 

kernel weighting methods are used for the estimation. Conventional local linear regression 

discontinuity standard errors clustered at the monitoring station level are reported below the 

estimates. * significant at 10% ** significant at 5% *** significant at 1%. 
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Table 4. RD Estimates of the Impact of Water Quality Monitoring on TFP by Year 

  

Residual TFP ï Polluting 

Industries 

Residual TFP ï Non-Polluting 

Industries 

    (1) (2) (3) (4) (5) (6) 

        
Panel A: Before and After 2003     

 Before 2003 0.09 0.10 0.11 0.01 0.01 0.06 

  (0.19) (0.20) (0.24) (0.12) (0.13) (0.15) 

 Obs. 2,570 2,570 2,570 4,565 4,565 4,565 

 After 2003 0.36** 0.35** 0.40** 0.03 0.04 0.07 

  (0.16) (0.16) (0.17) (0.08) (0.09) (0.10) 

 Obs. 5,916 5,916 5,916 10,992 10,992 10,992 

        
Panel B. by Year      

 Year 2000 -0.18 -0.06 -0.15 -0.22 -0.21 -0.11 

  (0.26) (0.20) (0.28) (0.17) (0.18) (0.16) 

 Obs. 1,411 1,411 1,411 2,428 2,428 2,428 

 Year 2001 -0.02 -0.01 -0.04 -0.07 -0.05 -0.19 

  (0.21) (0.21) (0.24) (0.17) (0.18) (0.17) 

 Obs. 1,411 1,411 1,411 2,428 2,428 2,428 

 Year 2002 0.04 0.09 0.05 0.03 0.01 -0.02 

  (0.20) (0.20) (0.25) (0.13) (0.13) (0.12) 

 Obs. 2,106 2,106 2,106 3,644 3,644 3,644 

 Year 2003 0.30 0.34 0.37* 0.04 0.04 0.04 

  (0.29) (0.29) (0.21) (0.16) (0.16) (0.15) 

 Obs. 2,367 2,367 2,367 3,888 3,888 3,888 

 Year 2004 0.12 0.14 0.21 0.08 0.06 0.06 

  (0.30) (0.32) (0.31) (0.11) (0.11) (0.11) 

 Obs. 3,288 3,288 3,288 5,509 5,509 5,509 

 Year 2005 0.31 0.35 0.35 -0.04 -0.05 -0.06 

  (0.24) (0.25) (0.26) (0.15) (0.15) (0.15) 

 Obs. 3,750 3,750 3,750 6,296 6,296 6,296 

 Year 2006 0.48** 0.52** 0.61** 0.01 0.01 0.03 

  (0.22) (0.25) (0.27) (0.14) (0.15) (0.16) 

 Obs. 3,981 3,981 3,981 6,969 6,969 6,969 

 Year 2007 0.37**  0.38* 0.42* 0.14 0.15 0.17* 

  (0.19) (0.20) (0.22) (0.09) (0.09) (0.10) 

  Obs. 4,460 4,460 4,460 8,103 8,103 8,103 

  Kernel  Triangle Epanech. Uniform Triangle Epanech. Uniform 

Notes: Each cell in the table represents a separate regression. Monitoring station and industry 

fixed effects are absorbed before estimating regression discontinuity. In columns 1-3, we 

report the estimated discontinuity for polluting industries, and in columns 4-6, we report the 

estimated discontinuity for non-polluting industries.  Local linear regression and MSE-

optimal bandwidth proposed by Calonico et al. (2014) and Calonico (2017) for different 

kernel weighting methods are used for the estimation. Conventional local linear regression 

discontinuity standard errors clustered at the monitoring station level are reported below the 

estimates. * significant at 10% ** significant at 5% *** significant at 1%. 



Table 5. Instrumental Variable Estimation using Hydrological Stations   

  Polluting Industries NonïPolluting Industries 

  Upstream TFP (log) Upstream TFP (log) 

    (1) (2) (3) (4) 

      

 Upstream Hydrological Station 0.38**  0.30**  

  (0.18)  (0.14)  

 Upstream Monitoring Station  -0.35**  -0.08 

   (0.15)  (0.16) 

      

  Specification 1st Stage 2SLS 1st Stage 2SLS 

 Station FE Y Y Y Y 

 Industry FE Y Y Y Y 

 Observations 4,445 4,462 8,976 8,981 

 F Statistic 10.48 0.03 22.82 1.18 

  R-squared 0.47 0.21 0.45 0.11 

Notes: Each column in the table represents a separate regression. We define "upstream monitoring station" as a dummy indicator for whether a 

firm is upstream from a monitoring station within a 10 km range, and similarly, we define "upstream hydrological station" as a dummy indicator 

for whether a firm is upstream from a hydrological station within a 10 km range.  Our outcome of interest is firm-level TFP estimated using 

Olley and Pakes (1996) method, our endogenous variable is "upstream monitoring station", and our instrumental variable is "upstream 

hydrological station". We present first-stage results and IV 2SLS results separately for firms in polluting industries (columns 1 and 2) and firms 

in non-polluting industries (columns 3 and 4). Monitoring station fixed effects are controlled for in all specifications. Standard errors are clustered 

at the monitoring station level.  * significant at 10% ** significant at 5% *** significant at 1%. 

 

 

 

 

 



Table 6. RD Estimates using Placebo Downstream Firms         

  Polluting Industries Non-Polluting Industries 

    (1) (2) (3) (4) (5) (6) 

         
Panel A: Water Quality Monitoring and TFP       

 TFP (log) - Polluting Industries 0.36 0.44* 0.26 -0.18 -0.20 -0.13 

  (0.23) (0.26) (0.29) (0.16) (0.15) (0.18) 

              

              

Panel B: Water Quality Monitoring and Residual TFP             

 TFP (log) - Polluting Industries 0.48** 0.52** 0.61***  0.13 0.11 0.14 

 (Station and Industry FE Absorbed) (0.20) (0.21) (0.23) (0.13) (0.11) (0.12) 

 Obs. 4,435 4,435 4,435 8,001 8,001 8,001 

  Kernel  Triangle Epanech. Uniform Triangle Epanech. Uniform 

Notes: Each cell in the table represents a separate regression, where each control firm is replaced by its best match in the whole sample from a 

pre-2003 nearest neighbour matching (based on TFP, industry, and other basic characteristics). TFP is estimated using Olley and Pakes (1996) 

method. The discontinuities at monitoring stations are estimated using local linear regression and MSE-optimal bandwidth proposed by Calonico 

et al. (2014) and Calonico (2017) for different kernel weighting methods. Standard errors clustered at the monitoring station level are reported 

below the coefficients in columns 1ï5 and conventional local linear regression discontinuity standard errors clustered at the monitoring station 

level are reported in columns 6-8. * significant at 10% ** significant at 5% *** significant at 1%. 

 

 



Table 7. Robustness Checks:  Impact of Water Quality Monitoring on TFP   

  TFP ï Polluting Industries 

    (1) (2) (3) 

     
Panel A. Alternative Ways to Estimate RD and Standard Errors   

 Bias-corrected RD Estimates 0.35** 0.34** 0.38** 

  (0.15) (0.15) (0.16) 

 Bias-corrected Robust Estimates 0.35* 0.34* 0.38** 

 

 
(0.19) (0.19) (0.19) 

  

   

Panel B. Alternative Ways to Choose Optimal Bandwidth   

 Bandwidth Chosen by MSE-Two Selector 0.30** 0.29* 0.25 

   (0.15) (0.15) (0.17) 

 Bandwidth Chosen by MSE-Sum Selector 0.31** 0.30** 0.34** 

 

 
(0.15) (0.15) (0.16) 

 Bandwidth Chosen by CER-D Selector 0.38** 0.40** 0.43** 

 

 
(0.19) (0.19) (0.20) 

 Bandwidth Chosen by CER-Two Selector 0.35** 0.39** 0.48** 

 

 
(0.17) (0.17) (0.20) 

 Bandwidth Chosen by CER-Sum Selector 0.37** 0.39** 0.44** 

 

 
(0.18) (0.19) (0.20) 

     
Panel C. Placebo Tests    

 Move Monitoring Stations Upstream by 5km 0.12 0.13 0.11 

  (0.16) (0.16) (0.16) 

 Move Monitoring Stations Upstream by 10km -0.08 -0.09 -0.08 

  (0.11) (0.11) (0.12) 

 Move Monitoring Stations Downstream by 5km 0.13 0.15 0.11 

  (0.09) (0.09) (0.11) 

 Move Monitoring Stations Downstream by 10km 0.03 0.05 0.07 

    (0.16) (0.15) (0.17) 

  Kernel  Triangle Epanech. Uniform 

Notes: Each cell in the table represents a separate regression. Monitoring station and industry fixed 

effects are absorbed before estimating regression discontinuity. Conventional local linear regression 

discontinuity standard errors clustered at the monitoring station level are reported below the estimates 

(except Panel A). Local linear regression and MSE-optimal bandwidth selected by Calonico et al. 

(2014) and Calonico (2017) for different kernel weighting methods are used for the estimation 

(except Panel B). Monitoring station and industry fixed effects are absorbed before estimating 

regression discontinuity.  * significant at 10% ** significant at 5% *** significant at 1%. 
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Table 8. Channels: RD Estimates on other Measures       

  

Conventional  

Local RD 

Bias-Corrected RD Bias-Corrected 

Robust 

    (1) (2) (3) (4) (5) (6) 

        
Panel A. Output Related      

 Value-Added 0.04 0.02 -0.05 -0.07 -0.05 -0.07 

 (log) (0.22) (0.23) (0.22) (0.23) (0.28) (0.29) 

 Profit 4.47 4.36 5.48 5.36 5.48 5.36 

 (10 million yuan) (4.07) (3.88) (4.07) (3.88) (5.58) (5.37) 

        
Panel B. Input Related       

 Employees -0.16 -0.14 -0.22 -0.19 -0.22 -0.19 

 (log) (0.16) (0.16) (0.16) (0.16) (0.21) (0.21) 

 Intermediate Input -0.18 -0.16 -0.28 -0.26 -0.28 -0.26 

 (log) (0.25) (0.27) (0.25) (0.27) (0.33) (0.33) 

 Capital Stock 1 # -0.49* -0.46 -0.62** -0.60** -0.62* -0.60 

 (log) (0.29) (0.29) (0.29) (0.29) (0.37) (0.37) 

 Capital Stock 2 # -0.55* -0.52* -0.70** -0.66** -0.70* -0.66* 

 (log) (0.30) (0.30) (0.30) (0.30) (0.38) (0.38) 

        
Panel C. Naïve Labor and Capital Productivity     

 VA/Employee 0.17 0.24 0.18 0.27 0.18 0.27 

 (log) (0.19) (0.21) (0.19) (0.21) (0.24) (0.26) 

 VA/Capital Stock 1 0.26** 0.27***  0.26** 0.29***  0.26** 0.29** 

 (log) (0.10) (0.11) (0.10) (0.11) (0.13) (0.13) 

 VA/Capital Stock 2 0.22** 0.24** 0.22** 0.26** 0.22 0.26* 

 (log) (0.11) (0.11) (0.11) (0.11) (0.14) (0.14) 

        
Panel D. Porter Hypothesis      

 R&D -0.06 -0.17 -0.16 -0.28 -0.16 -0.28 

  (log) (0.39) (0.46) (0.39) (0.46) (0.58) (0.62) 

  Kernel  

Triangl

e 

Epanech

. 

Triangl

e 

Epanech

. 

Triangl

e 

Epanech

. 

Notes: Each cell in the table represents a separate regression. Monitoring station and industry 

fixed effects are absorbed before estimating regression discontinuity. We use post-2003 

collapsed data to estimate the regression discontinuities. Local linear regression and MSE-

optimal bandwidth proposed by Calnoico et al. (2014) and Calonico (2017) for different 

kernel weighting methods are used for the estimation. Station and industry fixed effects are 

controlled in all regressions.  Standard errors are clustered at the monitoring station level, 

and reported below the estimates. # Capital Stock 1 is measured by the value of fixed assets 

at the end of each year and Capital Stock 2 is the annual average value of fixed assets. * 

significant at 10% ** significant at 5% *** significant at 1%. 

 



Table 9. Political Economy of Water Quality Monitoring           

  Conventional  Local RD Bias-Corrected RD Bias-Corrected Robust 

    (1) (2) (3) (4) (5) (6) 

        
Panel A. "Double Standard"       

 Waste Discharge Fee -1.15** -1.07** -1.41***  -1.32** -1.41** -1.32** 

 (log) (0.51) (0.53) (0.51) (0.53) (0.57) (0.60) 

        
Panel B. Strong vs. Weak Political Incentives       

 TFP (log) - Strong Incentive 0.57***  0.59***  0.63***  0.66***  0.63***  0.66***  

  (0.19) (0.20) (0.19) (0.20) (0.21) (0.23) 

 TFP (log) - Weak Incentive 0.01 0.08 0.00 0.07 0.00 0.07 

  (0.23) (0.24) (0.23) (0.24) (0.29) (0.31) 

        
Panel C. Automatic vs. Manual Monitoring Stations      

 TFP (log) - Automatic Stations 0.92 1.01* 1.11* 1.22** 1.11 1.22* 

  (0.59) (0.57) (0.59) (0.57) (0.74) (0.71) 

 TFP (log) - Manual Stations 0.26* 0.26* 0.27* 0.27* 0.27 0.27 

    (0.15) (0.15) (0.15) (0.15) (0.18) (0.18) 

  Kernel  Triangle Epanech. Triangle Epanech. Triangle Epanech. 

Notes: Each cell in the table represents a separate regression. Monitoring station and industry fixed effects are absorbed before estimating 

regression discontinuity. We focus on polluting firms and use post-2003 collapsed data to estimate the regression discontinuities. Local linear 

regression and MSE-optimal bandwidth proposed by Calnoico et al. (2014) and Calonico (2017) for different kernel weighting methods are used 

for the estimation. Panel A examines how tax and waste discharge fee collected by the government differ between upstream and downstream 

firms. Panel B estimates the discontinuities separately using the subsamples where the Prefecture Party Secretary has or does not have strong 

promotion incentives (age<=56 vs. age >=56). Panel C estimates the discontinuities separately for automatic and manual monitoring stations. * 

significant at 10% ** significant at 5% *** significant at 1%. 
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Table 10. RD Estimates of the Impact of Water Quality Monitoring on Emissions       

  Conventional Local RD Bias-Corrected Bias-Corrected Robust 

    (1) (2) (3) (4) (5) (6) 

        
Panel A: COD Emission       

 COD Emission (log) 0.83* 0.75* 0.99** 0.92** 0.99** 0.92* 

  (0.44) (0.42) (0.44) (0.42) (0.49) (0.47) 

 COD Emission Intensity (log) 0.55** 0.49* 0.68** 0.62** 0.68** 0.62** 

  (0.27) (0.26) (0.27) (0.26) (0.32) (0.31) 

 

       

Panel B: Wastewater Discharge       

 Waste Water Discharge (log) 0.39 0.39 0.49 0.50 0.49 0.50 

  (0.33) (0.35) (0.33) (0.35) (0.40) (0.42) 

 Waste Water Discharge Intensity (log) 0.34* 0.33* 0.42** 0.41** 0.42* 0.41* 

    (0.20) (0.20) (0.20) (0.20) (0.23) (0.22) 

 Bandwidth Selector MSE MSE MSE MSE MSE MSE 

 Obs. 9,888 9,888 9,888 9,888 9,888 9,888 

  Kernel  Triangle Epanech. Triangle Epanech. Triangle Epanech. 

Notes: Each cell in the table represents a separate regression. Monitoring station fixed effects are absorbed before estimating regression 

discontinuity. Local linear regression and MSE-optimal bandwidth selected by Calonico et al. (2014) and Calonico (2017) for different kernel 

weighting methods are used for the estimation. Conventional local linear regression discontinuity standard errors clustered at the monitoring 

station level are reported below the estimates. * significant at 10% ** significant at 5% *** significant at 1%. 



Table 11. Predicted Effects of Water Quality Monitoring on TFP and COD 

  Model 1 Model 2 Model 3 

    (1) (2) (3) 

     
Panel A. TFP Effects for Large and Small Firms (Measured by Industry Output Value) 

 20% (log Rev ~ 9.01) 0.14 0.10 0.11 

  (0.24) (0.23) (0.23) 

 40% (log Rev ~ 9.58) 0.27 0.32 0.32 

  (0.23) (0.22) -0.22 

 60% (log Rev ~ 10.16) 0.42* 0.50** 0.49** 

  (0.22) (0.21) 0.21 

 80% (log Rev ~ 10.92) 0.62***  0.66***  0.65***  

  (0.22) (0.20) (0.20) 

     
Panel B. COD Effect for Large and Small emitters (Measured by COD Emissions) 

 20% (log COD ~ 5.97) 0.14 0.12 0.19 

  0.44  (0.43) (0.44) 

 40% (log COD ~ 7.46) 0.93** 0.96** 0.99** 

  (0.43) (0.43) (0.44) 

 60% (log COD ~ 8.70) 1.59***  1.62***  1.59***  

  (0.43) (0.43) (0.43) 

 80% (log COD ~ 10.18) 2.38***  2.34***  2.27***  

  (0.43) (0.43) (0.42) 

  Heterogeneity Specification Linear Quadratic Cubic 

Notes: This table reports the predicted effects of water quality monitoring on TFP and COD 

emission intensity. Monitoring station and industry fixed effects are absorbed before 

estimating regression discontinuity. In Panel A, we explore the TFP heterogeneity at 

different revenue levels, and in Panel B, we explore the COD intensity heterogeneity at 

different COD emission levels. We use parametric RD to estimate the heterogeneous effects 

using different heterogeneity functional forms. We choose the polynomial RD specifications 

that generate the closest estimates to the non-parametric estimates reported in Table 2 and 

Table 8 as the baselines.  We then include interactions to test the heterogeneity. "Linear" 

means that we use a linear interaction between the downstream dummy and log revenue (or 

log COD), and "quadratic" means we interact the downstream dummy with a quadratic 

function of log revenue (or log COD). Panel A shows that the monitoring effect is only 

significant for large firms, and Panel B shows that the monitoring effect is only significant 

for large emitters. 

 

 



Table 12. Economic Costs of COD Abatement         

  Conventional Bias-Corrected 

    (1) (2) (3) (4) 

      
Panel A. Estimated Effect of Water Quality Monitoring     

 Effect on log TFP 0.31** 0.31** 0.35** 0.34** 

  (0.15) (0.15) (0.15) (0.15) 

 Effect on log COD Emission 0.83* 0.75* 0.99** 0.92** 

  (0.44) (0.42) (0.44) (0.42) 

 Effect on log COD Emission Intensity 0.55** 0.49* 0.68** 0.62** 

  (0.27) (0.26) (0.27) (0.26) 

      
Panel B. Estimated Economic Costs Estimates:      

 TFP Loss if all Polluting Firms are Monitored 26.66% 26.66% 29.53% 28.82% 

 TFP Loss per 10% COD Emission Abatement 2.49% 2.75% 2.35% 2.46% 

 TFP Loss per 10% COD Emission Intensity Reduction 3.75% 4.21% 3.43% 3.65% 

 Total Output Loss if all Polluting Firms are Monitored (billion CNY)  3988.9 3988.9 4599.6 4444.6 

 Total Output Loss in the Polluting Industry during the 11th Five-Year Plan (billion CNY), A 351.98 390.86 332.60 348.16 

 Total Output Loss in the Polluting Industry per 2.5% COD Abatement (billion CNY), A 68.64 76.01 64.95 67.91 

 Total Output Loss in the Polluting Industry per 10% COD Abatement (billion CNY), A 279.79 310.48 264.48 276.77 

 Total Output Loss in the Polluting Industry per 2.5% COD Abatement (billion CNY), B 242.91 269.00 229.85 240.34 

  Total Output Loss in the Polluting Industry per 10% COD Abatement (billion CNY), B 990.2 1098.8 936.0 979.5 

 Kernel Triangle Epanech. Triangle Epanech. 

 Gross Output Value in the Polluting Industry in 2006 (billion CNY), A 10975.7 

  Gross Output Value in the Polluting Industry in 2015 (billion CNY), B 38844.9 

Notes: The gross output values were obtained from the website of the National Bureau of Statistics. A: calculation is based on gross output value 

(of industries above designated size) in 2006; B: calculation is based on gross output value (of industries above designated size) in 2015. 
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Figure 1. Illustrating the Identification Strategy
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Figure 2. Distribution of Surface Water Quality Monitoring Stations
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Figure 3. RD Plot: Effects of Water Quality Monitoring on TFP
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Figure 4. RD Estimates by Year



57 

 

 

 

Figure 5. Distribution of Firms  
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Online Appendix to 

ñEnvironmental Regulation and Firm Productivity in China: Estimates from a 

Regression Discontinuity Designò 

Appendix A. Estimation of TFP using Olley-Pakes Method 

 

Our Olley-Pakes TFP measure is constructed based on Brandt et al. (2012) using the Annual Survey 

of Industrial Firms (ASIF) dataset from 2000 to 2007. We made slight changes to the estimations of 

some key parameters to improve the accuracy of productivity measurement in the ASIF dataset, as 

suggested by Yang (2015). We explain in detail how we construct these key parameters. 

 

Gross Output 

Following the literature, we use production value, instead of sales, as the gross output measure. 

Production value and sales differ slightly due to the change in inventories. The former is more closely 

related to input and productivity, and thus more relevant for TFP estimation. 

When constructing output deflators, we follow Yang (2015) by using output price indexes for every 

2-digit industry in each year from the ñUrban Price Yearbook 2011ò published by the National Bureau 

of Statistics. Because those price indexes are linked across different years, we can use them to deflate 

yearly nominal output to real output in 2000. 

 

Value Added 

When constructing real value added, we subtract from the aforementioned real output the goods 

purchased for resale, indirect taxes, and material inputs. 

We construct input deflators from National Input-Output tables in 1997, 2002, and 2007, to take into 

account the dynamics of input price in different sectors, as suggested by Yang (2015). By doing so, 

we are able to deflate nominal inputs in each sector in each year to the real values in 2000. 

 

Employment and Wages 

The ASIF dataset contains information on the number of employees and the compensation for labor, 

including wages, employee supplementary benefits, and insurance. We follow Brandt et al. (2012) to 

sum up wages, benefits, and insurance as a proxy for total labor compensation.  
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Capital Stock and Investment 

In the ASIF dataset, firms report the value of their fixed capital stock at original purchase prices, as 

well as capital stock at original purchased prices less accumulated depreciation. Because these values 

are the sum of nominal values in all the past years, they cannot be taken directly to proxy for real 

capital stock. To back out the real capital stock and construct real investment from this variable, we 

follow the approach suggested by Yang (2015). 

For each year after the first period, we first take the difference between ñcurrent capital stockò and 

ñcapital stock in the previous period,ò then deflate it according to the previously calculated price 

indexes for this period. For observations in the first period of the panel, we assume that, from the 

firmôs establishment until this first period, it had on average the same increasing trend in investment 

rate as the 2-digit sector average value, which can be collected from the yearbooks published by the 

National Bureau of Statistics. Under this assumption, together with the nominal capital stock in the 

first period, nominal capital stock when established, and relevant deflators, we are able recover the 

real investment and real capital stock in the first period as well. 

 

TFP Estimation 

With the key variables constructed, we follow the literature and use the Olley and Pakes (1996) 

approach to estimate TFP. This approach addresses both simultaneity and selection problems that are 

salient in the traditional Solow-residual type TFP estimates. For implementation, we use the Stata 

package provided by Yasar et al. (2008); please refer to their manual for the details of the estimation. 
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Appendix B. Conceptual Framework  

We provide a conceptual framework that helps to explain the empirical findings. We focus on firmsô 

production decisions and address how environmental regulations can affect their TFP. We assume that 

firms produce homogeneous goods, with a Hicks-neutral continuously differentiable production 

functionὗὑȟὒ, where ὑ represents capital, ὒ represents labor, and ὗȟὗ πȠὗ ȟὗ π.  

When a firm produces output ὗ, emissions are generated as a by-product and are an increasing 

function of output ὗ. The firm can reduce its emissions by employing extra (non-productive) labor ὒ 

and/or capital ὑ . The final emission level is therefore a continuously differentiable function 

Ὁὗȟὑȟὒ . We assume that Ὁ πȟὉ πȠὉ πȟὉ πȠὉ πȟὉ π and Ὁ Ὁ

π. 

We model the governmentôs environmental regulations as a unit tax (fine), ὸ, on firmôs emissions Ὁ. 

A firm maximizes its profit by setting ὑȟὒȟὑȟὒ as follows: 

(1)              ÍÁØ
ȟȟ ȟ

“ ὴϽὗὑȟὒ ὶϽὑ ὑ ύϽὒ ὒ ὸϽὉὗȟὑȟὒ  

where ὴ represents the market output price, ὶ represents the capital price or interest rate, and ύ 

represents wages. 

The first order conditions for the firmôs profit maximization problem are therefore:  

(2) ὴϽὗ ὶ ὸϽὉϽὗ π 

(3) ὴϽὗ ύ ὸϽὉϽὗ π 

(4) ὶ ὸϽὉ π 

(5)  ύ ὸϽὉ π 

Applying the implicit function theorem, we can prove the following: 

(6) πȟ πȠ πȟ πȠ 

(7) 
ϳ ϳ

πȠ  

(8) 
ϳ ϳ

Ƞ  
ϳ ϳ

 . 



4 

 

Proposition 1. An increase in the emissions tax reduces TFP.  

Proof. By definition, 4&0
Ͻ ȟ

Ͻ Ͻ
 ; and we therefore have the following: 

(11)              

Ͻ ȟ

Ͻ Ͻ
 ὴϽ

Ͻ Ͻ Ͻ Ͻ

Ͻ Ͻ
π 

where the inequality follows from Equation (8).  

Proposition 2. An increase in the emission tax ὸ reduces the emission level Ὁ and emission intensity 

ȟ ȟ
.  

Proof. Taking the derivative of emissions with respect to the emission tax, we have:  

(9) ὉϽ ὉϽ ὉϽ π; 

where the inequality follows from Equations (6) and (7). 

 For emission intensity, we have:  

(10) 
Ⱦ

 
Ͻ Ͻ

π 

where the inequality follows from Equation (7).  

In this model, we implicitly assume that production has no effect on the market price. This 

assumption is likely to hold in our empirical setting because we focus on a small set of firms 

concentrated in a small geographical area. On the one hand, these firms face the same market because 

they are located close to each other; on the other hand, as there are many other firms and buyers in the 

market, local water quality regulations cannot affect the output market prices. This is important 

because we cannot directly measure output quantity ὗ in our firm-level production data. Instead, we 

can only measure revenue ὴϽὗὑȟὒ. Because firms are price-takers in our setting, we can translate 

the effects of environmental regulation on revenue-based TFP to real (output-based) TFP. In the case 

where prices depend on marginal cost, we will underestimate the true TFP effect because the price 

increases as marginal cost of production increases. 
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Appendix C1. An Order Issued by Kunshan Government to Improve Water Quality around 

the Monitoring Stations (Scan Copy) 
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